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Gestural interaction has evolved from a set of novel interaction techniques developed in research labs, to
a dominant interaction modality used by millions of users everyday. Despite its widespread adoption, the
design of appropriate gesture vocabularies remains a challenging task for developers and designers. Existing
research has largely used Expert-Led, User-Led, or Computationally-Based methodologies to design gesture
vocabularies. These methodologies leverage the expertise, experience, and capabilities of experts, users, and
systems to fulfill different requirements. In practice, however, none of these methodologies provide designers
with a complete, multi-faceted perspective of the many factors that influence the design of gesture vocabu-
laries, largely because a singular set of factors has yet to be established. Additionally, these methodologies
do not identify or emphasize the subset of factors that are crucial to consider when designing for a given
use case. Therefore, this work reports on the findings from an exhaustive literature review that identified
13 factors crucial to gesture vocabulary design and examines the evaluation methods and interaction tech-
niques commonly associated with each factor. The identified factors also enable a holistic examination of
existing gesture design methodologies from a factor-oriented viewpoint and highlighting the strengths and
weaknesses of each methodology. This work closes with proposals of future research directions of develop-
ing an iterative user-centered and factor-centric gesture design approach as well as establishing an evolving
ecosystem of factors that are crucial to gesture design.
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1 INTRODUCTION

WithinHuman–Computer Interaction (HCI), gestural input most often refers to the user’s fin-
ger, hand, arm, or other body part movements to express desired actions to computing systems.
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From early work exploring gestural input with a light pen [309] to research that proposed manip-
ulating virtual objects using single finger gestures on a force and position sensitive screen [209]
and more recent work that used mid-air gestures to enhance the creation of dynamic phenomena
animations in virtual reality [25], the design, facilitation, and detection of gestural input has had
a long history within HCI.
The methodologies used to design gesture vocabularies may be broadly categorized into three

groups. With Expert-Led methodologies, seasoned gesture designers utilize their expertise, and
past experiences with gestural interaction to createmappings between physical actions and system
responses [55, 98, 120]. Expert designers can quickly create gesture vocabularies that are simple,
socially acceptable, and ergonomic using the knowledge they have gained from watching users
and interacting with gesture-based systems themselves. Although this is one of the most common
methods used, the resulting gesture vocabularies have been criticized for lacking discoverability
or intuitiveness [362]. User-Led methodologies, on the other hand, employ participatory elicita-
tion techniques to generate gesture vocabularies based on user behavior or feedback about which
gestures map most naturally to a given command [229, 258, 362]. The elicited gestures that result
when one draws on the “wisdom of the crowd” may be intuitive and discoverable by a target user,
but may lack other characteristics, such as not being differentiable during recognition, not fully
leveraging the input capabilities of a given input device, or not being ergonomic during repeated,
long-term use. The last group of methodologies, i.e., Computationally-Based methodologies, uti-
lize algorithms to identify gestures that are easy for a system or interface to recognize and trivial
for a designer to specify [16, 26, 106, 199]. While algorithms can generate a gesture vocabulary that
is easy to recognize, it is difficult to algorithmically model other factors such as the learnability,
transferability, or social acceptability of the generated gestures.
Although these methodologies all seek to leverage the unique expertise, backgrounds, and ca-

pabilities of different designers (i.e., experts, users, and computational models), the factors that a
designer may wish to optimize often vary depending on the desired functionality, hardware capa-
bilities, target users, or social context of an application. As a result, it is unlikely that the gestures
designed using one methodology will fulfill all the requirements a designer may have. Further-
more, due to the lack of understanding, definition, and categorization of the relevant factors that
are important to gesture design, many gesture vocabularies created using these methodologies
contain gestures with socially unacceptable semiotics, gestures that are not safe for long-term use,
or gestures that are not generalizable to other contexts or users [60, 220].

The goal of the present work is thus to provide an as-complete-as-possible listing of factors
found to be important in the design of gestures, and to provide an index to the research that
provides the field’s best-known methods for optimizing these factors. By identifying these factors,
researchers and designers can develop a multi-faceted understanding of the many factors that are
crucial to gesture design and understand the strengths and weaknesses of current gesture design
methodologies along each of the identified factors.
To identify the factors crucial to the design of gesture vocabularies, over 1,600 gestural interac-

tion research papers were surveyed and 288 papers within this body of literature that specifically
focused on gesture design were synthesized further. This activity resulted in the identification,
definition, and analysis of thirteen factors critical to gesture design including Situational factors
(i.e., Context, Modality, Social Acceptability), Cognitive factors (i.e., Discoverability, Intuitiveness,
Learnability, and Transferability), Physical factors (i.e., Efficiency, Complexity, Ergonomics, and
Occlusion), and System factors (i.e., Feedback and Recognition). The holistic importance of the
identified factors was explored by examining the three categories of gesture design methodologies
from a factor-oriented viewpoint and highlighting the strengths and weaknesses of eachmethodol-
ogy. Informed by these findings, we delineate two future research directions, including a potential
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factor-centric gesture design approach wherein gesture designers identify, prioritize, design, eval-
uate, and refine the set of factors most related to their applications as well as establishing and
maintaining an evolving ecosystem of gesture design factors. We believe these future directions
can further the practices and the understanding of gesture design in both research community and
industry.

2 DESIGNING GESTURES TODAY

Manymethodologies have been proposed to assist in the creation of gesture vocabularies or gesture
sets. Somemethodologies rely exclusively on expert knowledge and experiences [6] or gather feed-
back and performancemeasures from users [6, 229] for gesture creation, whereas others emphasize
how easy gestures will be to recognize [229] or use mathematical models and simulations [300].
Regardless of the methodology used, the general recommendation for the design of gesture vo-
cabularies is that a resultant gesture vocabulary should contain interactions that are comfortable,
efficient, easy to learn, and execute a user’s desired actions [228].

2.1 Expert-Led Methodologies

The most traditional method that has been used to design a gesture vocabulary employs a top-
down approach, wherein designers or researchers rely on their knowledge and experience with
a target input device, end user population, or intended user actions to develop a gesture vocabu-
lary. This process initially involves the identification and collection of a set of requirements for an
application. Techniques such as developing scenarios [308] or use cases [131], performing a task
analysis [81], wireframing [126], or storyboarding [313] allow one to understand end users’ abili-
ties, skills, environments, devices, and tasks. Using these requirements, a designer can then create
a gesture vocabulary using gesture vocabularies that have been published by others [365], best
practices and recommendations from the literature [376], commercial gesture vocabulary exam-
ples (e.g., Graffiti), metaphors or observations of analog interactions [119], or interaction designs
that are based on a designer’s experiences [354]. Once the vocabulary has been developed, a user
study is often performed to evaluate the gestures using a given population, environment, device,
or task. Factors such as learnability, discoverability, ergonomics, and social acceptability, among
others, are typically of interest [194, 202, 289, 352, 364]. For example, Wickeroth et al. proposed a
Gesture Usability Scale, which extended the System Usability Scale [53] to measure the usability
of gestures based on their learnability, ergonomics, complexity, and recognition [352].

A variant of this traditional methodology proposed by Sturman and Zeltzer, utilized a five-stage
method to assist designers in developing whole hand gestures [306]. With this method, a designer
first determined if whole hand input was appropriate for their application by considering how
natural, adaptable, and dexterous application movements needed to be. If deemed appropriate, the
designer then consulted Sturman and Zeltzer’s taxonomy of whole hand input to determine which
types of gestures would be best suited to their application. Next, they decomposed the tasks to be
performed into primitive actions and used these actions to decide which individual gestures would
be best to use. These decisions could be made using the existing literature, the previous experience
of a designer, or observations of how the hand is normally used in the intended, or similar, tasks.
Next, the designer decided which device(s) would be used by the target population and evaluated
the gestural vocabulary using these devices. After the evaluation, Sturman and Zeltzer noted that
one may need to iterate through the five-stage process many times to ensure that the whole vo-
cabulary met the identified requirements.
Barclay et al. systems-based view of gesture design proposed that designers work through a

quantitative model that progressively measured the quality and functionality of individual ges-
tures and the system as a whole [34]. First, the quality of a gesture was computed by combining
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various weighted measurements of factors including fatigue, naturalness, duration, and accuracy.
The results of each measure were then averaged to attain the overall quality of a given gesture.
Then, it was recommended that a designer should derive a state transition model of each desired
task within the target interface. Traversing through a state transition model, a designer should
then identify the pathway that is most typical, using videotaped data of users working with the
interface. This view then recommended that a designer compute a functional quality score using
this pathway. Lastly, a designer should compute the weighted average of all tasks within the sys-
tem as an indicator of the overall quality of the system. The resulting value could then be used to
determine the impact of changing individual gestures within the system or task-gesture mappings.
Rossini proposed a parameter-based model inspired by communicative gestures [273]. After

creating a gesture vocabulary (using an unspecified process), Rossini recommended focusing on
the size of a gesture to determine its appropriateness for the intended population and context.
Next, Rossini recommended deconstructing the gesture into its timing phases and attending to
the position of the hands throughout execution. Once this was completed, Rossini recommended
identifying the points of articulation of the gesture and the body space, or locus, involved in the
gesture. Using such information, one should be able to determine the morphology of the gesture
and use the morphology to evaluate and compare gestures using an end user population.
Although varying in the extent to which they abstract information and integrate the user within

the feedback and evaluation phases, expert-led methodologies can enable designers to harness
their knowledge and experience to quickly design and develop a gesture vocabulary. Dangers re-
lating to unnatural hand or limb postures and repetitive movements can also be avoided as expe-
rienced researchers or designers should know to monitor for such characteristics when designing
their vocabulary. As the designer is aware of the entire battery of tasks or functionality within the
interface, they can also easily check for similarity issues within a gesture vocabulary to ensure
that each gesture is distinct. A challenge with such methodologies, however, is that the evaluation
methodologies that are used, or the extent to which users are part of the process, can hamper
opportunities to understand the learnability or discoverability of gesture vocabularies. As the de-
signer is often not the end user of the gesture vocabulary, it can also be difficult to determine how
intuitive the derived gesture and functionality mappings are.

2.2 User-Led Methodologies

Methodologies that employ users as part of the design process have become very popular as of late.
Wobbrock et al. presented a technique to create gesture languages that focused on how easy they
would be to discover [362]. Inspired by participatory design, this elicitation methodology for user-
defined gestures (UDGs) does not rely on the expertise of a designer. Instead, an experimenter
showed everyday users the state of a user interface before and after potential input and then asked
them to describe or perform the gesture that they would expect to yield the change in state. Rather
than utilizing an interface, some experimenters described an outcome and asked users to mime or
describe the gesture that would correspond to that outcome [362]. Once the experimenters col-
lected responses from several users, they computed an agreement score to determine the “degree
of consensus” between users with respect to the elicited gestures [200, 361, 362]. Gestures exhibit-
ing higher agreeability were believed to be most appropriate for one’s application as they were
identified by the most users as being an appropriate gesture for a given action.
The main advantage of such elicitation techniques is that the resulting gesture vocabularies are

generated directly from user behavior and beliefs about the gestures that would most naturally
map to a given action. By leveraging the “wisdom of the crowd”, it is argued that the elicited
gestures would eventually converge toward the gesture that would most likely be initially guessed
or tried by an everyday user. Furthermore, because participants devise and perform each gesture
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without guidance, it is assumed that this methodology mimics users’ first attempts at a gesture in
the wild. The technique has also been reported to help achieve a “preferred” gesture vocabulary,
since participants may consider their preferences, in addition to their first-blush reactions, before
reporting their chosen gesture to experimenters [362].
This elicitation methodology has been widely adopted since the publication of Wobbrock et al.

article at 2009, being used to create gestures for freehand TV control [212, 323, 383] and smart
glasses [317], to unmanned aerial vehicles [249] and deformable displays [312]. Perhaps this wide-
spread adoption is due to the academic and industry support for participatory and user-centered
design, where the integration of users into a design process can help identify errors, ineffective
solutions, suboptimal strategies, or unique requirements and challenges that could impact an inter-
face before its final development or deployment [70]. We refer the audience to systematic review
conducted by Villarreal Narvaez et al. for more details, which surveyed 216 gesture elicitation
studies [334].
Preceding the work of Wobbrock et al., Nielsen et al. proposed the “human-based approach”

to create gesture vocabularies [229]. With this approach, a researcher first identified the func-
tions or features of an interface that gestures would be mapped to. The researcher then walked
participants through a variety of scenarios and asked them to describe how they would invoke
specific functionality or had participants use the interface within a Wizard-of-Oz paradigm. As
the scenarios were videotaped, the footage could be reviewed to identify how consistently and fre-
quently different gestures were used. To determine the gestures that constituted the vocabulary, a
researcher attended to the frequency and duration of gesture performances, the internal forces a
gesture posture created, as well as the effects that the movements could have on the hand. Once the
gesture vocabulary was composed, this approach recommended evaluating the gestures for guess-
ability, memorability, and ergonomics. Earlier iterations of Nielsen et al. human-based approach
also recommended the use of guided drawing tests to match gestures to desired functionality and
functionality to specific gestures [229].
Pyryeskin et al. utilized Wobbrock et al. approach within their work to design in-air tabletop

gestures [258]. However, they noted that such a methodology does not enable one to evaluate
users’ performance of gestures or the ability for gestures to be recognized with limited hardware.
They thus conducted a follow up study that used a target selection task with elicited gestures
as input. Metrics measured during this experiment included gesture speed, gesture accuracy, and
participant preferences. This two-study methodology enabled user input to be solicited and later
refined per the requirements of the hardware that was available.
More recently, Wu et al. proposed a variant of Wobbrock et al. approach that integrated elic-

itation within a four-stage process [372]. In Stage 1, designers were encouraged to utilize semi-
structured interviews to conduct a requirements analysis of an interface. Stage 2 utilized an elici-
tation study protocol that employed think-aloud methods, in addition to Wizard-of-Oz techniques
(if appropriate), to determine two distinct sets of gestures for a given interface. Stage 3 used these
gesture sets for a benchmark test that consisted of a degree of matching activity, memorability
test, comfort test, and post-test questionnaire. The result of this third stage was a refined gesture
vocabulary. Finally, Stage 4 made use of a personalized study design that employed the desired
hardware and software to ensure that the gestures met the needs identified in the requirements
analysis, the recognition algorithms were correct, and the gestures were evaluated for effective-
ness, efficiency, and user satisfaction. The authors noted that at any point during the process, one
may need to go back to a previous stage to make refinements.
Löcken et al. also proposed a four-stage process that integrated an elicitationmethodology [191].

Unlike Wu et al. model, gesture designers first identified the usage context and functions of a
system, but involved end users and other stakeholders in the process. Once the requirements were
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identified, a participatory elicitation study was conducted to iterate on the identified functionality
and collect gestures that could constitute the final gesture vocabulary. Designers then developed
multiple gesture vocabularies from the collected gestures and used them in the last step to conduct
a comparative evaluation between the proposed gesture vocabularies. This evaluation was thought
to hone in on an optimal set of gestures, which may be a combination of gestures from different
vocabularies. The authors recommended that this evaluation should include participants and elicit
qualitative feedback to determine the optimal gesture vocabulary.
User-led methodologies enable researchers and designers to obtain first-hand feedback from

their target population and understand potential discoverability and comprehension issues very
quickly. As each of the elicitation variants including Nielsen et al. human-based approach empha-
sized the need for appropriate mappings between gestures and functionality, it is unsurprising that
so many have flocked to this method [334]. The major difference between these variants, however,
is that they differ in when users become engaged in the process (i.e., Löcken et al. invite them as
part of the requirements analysis whereas Wu et al., Nielsen et al., and Wobbrock et al. begin en-
gagement after the requirements analysis is completed). These variants also differ in the outcomes
of the engagement (i.e., requirements, multiple gesture languages, empirical measurements, and
so on) and in the overarching goals that are of interest (e.g., discoverability, memorability, comfort,
and so on).
Although such elicitation methodologies have become popular, the creation of gestures by unin-

formed or novice users does not come without challenges. Placing the onus on end users to create
gestures which may be used by a wide population nullifies the expertise of designers, who often
take a holistic view of an user interface and consider many facets that are important to gestural
input (e.g., the impact of repeated usage [229], interference between gestures within a vocabu-
lary [381], the learnability of a vocabulary [186, 384], and the reliable detection and differentiation
of gestures [381]). Users frequently design gestures that are appropriations of existing gestures or
are limited by the technological capabilities of their past experiences, resulting in them neglecting
other important factors such as the learnability, legacy bias, social acceptability, recognition, or
the system feedback that would be provided [214].

2.3 Computationally-Based Methodologies

Rather than employing expert knowledge or users as part of the gesture design process, a growing
number of methodologies have focused on developing algorithms or models that result in gestures
that can be easily specified by a designer and are trivial for a system or interface to recognize.

2.3.1 Design-By-Demonstration. Early work on gesture interfaces focused on the design of
tools to improve the specification, mapping, and recognition of stroke-based input using tem-
plates or demonstrations of gestures that were performed by gesture designers. Most often, pattern
matching or learning algorithms were then employed to differentiate gestures based on their sim-
ilarity to the provided templates or recognize gesture input.
For example, Rubine’s GRANDMA toolkit [278] enabled a designer to record multiple instances

of a target gesture and associate the gesture to a user interface element via gesture handlers. Once
the gesture handlers were specified, the designer could evaluate the recognition accuracy of the
gesture using various recognition algorithms. Similarly, with the Gestural Interface Designer

(GID) [16], a designer could place user interface elements within an interface and map seman-
tic actions (i.e., gestures) to each element. It is unclear how one would determine which gestures
to use, but technical descriptions of how gestures would be recognized and represented within
the system were provided. Similarly, systems such as Agate [172], the Gesture Design Tool [195],
and iGesture [292] enabled designers to provide templates and examples of gestures to create
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gesture vocabularies, as well as evaluate the performance of different classifiers via descriptive sta-
tistics, recognition results, and classification matrices. To facilitate this process, GHoST, proposed
by Vatavu et al., utilized visualization techniques to aid in the analysis of gestures, by visualizing
recognition errors and characteristics of gesture articulation patterns [327].
Several computer vision-based tools have enabled developers and designers to identify, track,

and recognize hand, limb, or full-body gestures. Ashbrook and Starner’s MAGIC system [26], for
example, enabled designers to iteratively design motion gestures. Using MAGIC, a designer first
recorded themselves executing a number of example gestures with multiple repetitions. They then
browsed through the examples to view recognition results pertaining to distinguishability and
consistency. A designer could then examine gesture recognition performance by performing the
gestures that should or should not be recognized. In MAGIC 2.0 [160], Kohlsdorf et al. extended
MAGIC to better account for the false positive motions that could occur in everyday life. By in-
tegrating indexable Symbolic Aggregate approximations, a designer could search through a data-
base of everyday motions to determine if a given gesture could be accidentally triggered. Baytaş
et al. Hotspotizer [39] supported the declaration of locations where gesture input and recognition
should be more precise and areas where it should be less well-defined to allow for more fine and
coarse-grained recognition and tracking. Other tools such as Paper-Mache [158], crayons [88], and
Eyepatch [207] also enabled a user to demonstrate a motion and test different recognition classi-
fiers iteratively, albeit within a specialized interface that did not enable new recognition algorithms
to be authored easily. The DejaVu system [148], however, was built within an IDE to enable ges-
ture developers to visually and continuously monitor real-time gesture input, edit recognition
algorithms, and inspect recognition results.
Although pattern matching with templates or using examples of gestures can be viable methods

to quickly evaluate recognition algorithms, projects such as Gesture Coder [198] and Gesture Stu-
dio [199] supported the declaration of gestural input via high-level language-based constructs. Ges-
ture Coder enabled multi-touch gestures to be programmed by demonstration within the Eclipse
IDE. Its successor, Gesture Studio, further enabled a designer to record a demonstration of a de-
sired gesture, revise and edit the demonstration, create high-level behaviors that were composed
of multiple gestures or movement clips, and attach actions to the behaviors and gestures.
The aforementioned tools support designers in quickly capturing gestural data and prototyping

recognition algorithms, however, these tools only evaluate recognition performance. Quill [196],
however, enabled designers and developers to view accuracy information as well as empirical
data and visualizations about how similar a gesture was to existing gestures in a vocabulary. This
software also provided active feedback, i.e., hints and advice, that a designer could use to eliminate
similarities between gestures. Such feedback could be an important indicator when determining
how difficult gestures would be for a user to recall.
Other projects have focused on easing the development of gestures for tangible, mobile devices.

The aCAPpella system [106], for example, enabled everyday users to demonstrate context-aware
behaviors for recognition, extracted and collected relevant sensor information, detected events
that occurred within the sensor stream, and invited the user to annotate events corresponding to
the behaviors they wished to support. The system then utilized this information to train an interac-
tionmodel and incorporated it within a context-aware behavioral recognizer.With Exemplar [111],
a designer could connect sensors to a PC and record examples of themselves performing desired
motions. The streaming data was then visualized using small multiple views, which enabled design-
ers to interactively evaluate different filters using the live data stream. Once satisfied, the designer
could indicate which elements of a motion signal they wanted to recognize and the system would
compute how accurately the signal would be recognized amongst the other recorded samples. Mo-
geste [245] also enabled designers to create new gesture vocabularies by recording mobile phone
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movement and motions, selecting elements of the movement that defined a target gesture, and
testing the recognition using built-in classifiers. In a slightly different vein, a suite of applications
developed by Kim and Nam [152] and Kim et al. [153], enabled designers and everyday users to
prototype interactive applications that used touchscreens, cameras, or sensors-embedded objects.
Designers could demonstrate a target gesture and have various motion signals captured by embed-
ded sensors. The designer could then specify the state-transition diagram of the resulting sensor
streams using an interactive visual markup language to define their desired gestures.

2.3.2 Model-Driven Development. Aside from design-by-demonstration approaches to gestural
design, other notable projects have employed the use of declarative and theoretical models of hu-
man behavior [78, 180, 184]. Leiva et al., for example, postulated that gesture vocabularies could be
made by generating a large amount of gestural variants that were derivatives of a single example
gesture [180]. Using the kinematic theory of rapid human movement, they argued that such vari-
ants could be used to improve recognition and negate the need to recruit participants to evaluate
gesture languages. With their system, Gestures Go Go, designers could iteratively refine synthe-
sized gestures by removing variants they found unsuitable and then generating more variants. The
designers could also select and export a gesture recognizer (from a set of built-in recognizers based
on the programming language of their choice) and a synthesized gesture set, to reduce the devel-
opment time and efforts of gesture-based applications. The generated gesture vocabulary could
then be evaluated using various methods, such as Leiva et al. Omnis [185], the GATO [183], or the
KeyTime technique [181].
Work by Stern et al. viewed gesture vocabulary design as a multi-objective optimization prob-

lem [300].With their approach, a designer identified the tasks, commands, and gestures that should
be used in a system. They then conducted user experiments to determine how intuitive, stressing,
and how frequently used the gestures would be. These results were then used to compute an in-
tuitive matrix, comfort and stress matrices, and a reduced gesture language matrix. The gesture
language matrix was then optimized to minimize the size of the gesture vocabulary and maximize
recognition accuracy. The resulting optimization was combined with the intuitive, comfort, and
stress matrices to match gestures to commands such that Pareto optimal solutions were obtained.
From the generated solutions, the designer could then select the gesture vocabulary that best met
their preferences.
Hochreuter’s LemonGrasp [123] enabled designers to specify and design multi-touch gestures

using tunable Manipulation-Attributes, such as speed, number of fingers, and inertia. This inter-
face enabled designers to define gestures and the state changes (i.e., feedback) that should ac-
company the performance of each gesture. With Gestit [296], Spano et al. proposed a method for
creating gesture interfaces that utilized compositional and declarative gesture definitions to de-
fine interaction. The framework enabled developers to use declarative notations to define their
own gestures or combine existing gesture elements into gesture sequences. The notation was then
used to associate gestures to specific UI views and elements and to recognize the gestures. The
SNAP programming tool [155] also followed a programming-by-demonstration notion, but used
a conceptual model that viewed gestures and motions as “triggers”, devices that provide feedback
as “objects”, and device feedback as “responses”. The software then enabled designers to specify
interactions by composing these elements.
Each of these systems ensures that the resulting gestures are easy to recognize and create, rather

than focusing on user-facing aspects of gesture design. Many of these systems are also targeted to-
ward everyday users, but it is this population that may be unaware of the challenges that repeated
execution, social acceptability, or environmental context may have on the design and use of ges-
ture vocabularies. This neglect can be detrimental to users if, for example, the resulting gestures
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are difficult to remember, cumbersome or awkward to execute, or illogically mapped to function-
ality. Such systems would be better suited as components within a larger gesture design process
that incorporates processes to ensure gestures focus on these important factors as well.

2.4 Summary

Regardless of the methodology chosen, the process of creating gestural vocabularies remains a
cumbersome, time consuming, and error-prone endeavor. While each aforementioned methodol-
ogy has use cases or situational requirements that it is best suited for, what one method excels at,
another fails or does not even consider (Table 1).
In the case of user-led methodologies, despite using gestures everyday, many users are often

unaware of the facets of gesture design. On the other hand, when experts design gestures, their
expertise and concern for environmental or technology factors such as recognition rates or desired
modalities can hamper their abilities to design gestures that are discoverable or learnable. Gesture
vocabularies that are designed viamodeling or by demonstration are only as good as the underlying
models used to generate, model, or evaluate them. Systems such as Gesture Go Go, LemonGrasp,
Gestit, and SNAP offer though-invoking visions of future gesture design processes because they
suggest that the best gestures may be those that humans cannot even conceive of.
More recently, some researchers have proposed combining or chaining different approaches for

gesture vocabulary design. For example, building upon of the concept of constructing complex
gestures from primitive gesture components [190], Delamare et al. explored user-defined combi-
nations of gesture primitives which were previously designed by experts in the context of smart
TV interaction. Vuletic et al. explored the chaining of User-led and Expert-led approaches to de-
sign gestures for conceptual design applications [341]. Within their approach, researchers would
perform a gesture elicitation study (i.e., User-led methodology), and then professionals of varied
backgrounds would be asked to evaluate the resulting gesture set (i.e., Expert-led methodology)
so that the gesture vocabulary could be expanded or pruned as necessary to be suited to a larger
audience and be easier to learn. Vuletic et al. found, however, that after going through this exercise
and implementing the gesture set, it would necessary for researchers to undergo additional rounds
of evaluation of the resulting gesture set.
While an abundance of methodologies and systems have eased some of the processes required

to create gesture vocabularies, they also call for a cohesive, clear set of criteria or factors that can
be used to design and evaluate gestures. Identifying the factors that constitute an “optimal” gesture
vocabulary is essential because they could further enable a dissection of the strengths and weak-
nesses of existing and future methodologies and systems. In addition, they would enable gesture
designers to design, evaluate, and iterate on gesture vocabularies using factors that are most rele-
vant to their use cases, rather than being constrained to the subset of factors that a methodology
is currently capable of evaluating.

3 FACTORS IMPLICATED IN GESTURE DESIGN

To understand the multitude of factors implicated in the design of gestures, a survey of the litera-
ture on gesture design was conducted. As the terminology used to describe the facets of gestural
interaction has evolved over many decades, it has resulted in a fragmented lexicon. This section
synthesizes the literature on gesture design and provides a holistic and comprehensive understand-
ing that designers, developers, researchers, and the field have been missing.

3.1 Methodology

To collect a corpus of representative literature, specific terms including “gesture design”, “de-
sign of gestures”, “gesture tools”, “gesture set design”, “gesture toolkit”, “gesture factors”, “gesture
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Table 1. Summary of the Differences between the Gesture Design Methodologies Proposed and

used within the Literature: Expert-Led, User-Led, and Computationally-Based

Characteristic Expert-Led User-Led Computationally-Based

Empirical evaluation of vocabulary possible? �� � �
Users involved in the design process? � � ��
Users involved in the validation process? �� � ��
Potential for vocabulary to be biased toward

past experiences?

� � ��
Long-term validation process? � �� �
Single stage or multi-stage process of design? Both Both Single

Legend: � – Yes; �� – Maybe; � – No.

software”, and “gesture vocabulary design” were queried on the ACM Digital Library, IEEE Xplore
Digital Library, Google Scholar, andMicrosoft Academic Search. This resulted in 3,352 publications
being collected as of April 2021. After removing duplicate entries (i.e., 1,277 publications) and pub-
lications that were not in English (i.e., 144 publications), 1,931 publications remained. To identify
publications that focused on gesture design, we define the inclusion criteria as that the publication
must focus on designing gesture vocabulary for human–computer interaction scenarios, devising
methodologies for gesture design, or studying the aspects that can affect gesture performance. In
total, 1,643 publications were excluded as they focused on unrelated themes such as American Sign
Language learning, computer music, gesticulation within the fine arts, gesture recognition algo-
rithms, and so on, or because they republished the same results in multiple venues or utilized a
prior publication’s gesture vocabulary within a new domain instead of iterating on or developing
a new gesture vocabulary. Finally, a collection of 288 publications remained, which covered the
design of both 2D gestures using the fingers or hands, as well as 3D gestures using the arms, head,
or feet.
Using the search terms as a starting point, the best practices, recommendations, experimental

results, and future work themes discussed in each publication were classified using an open coding
method [305]. Themes were (re)classified or aggregated as new factors emerged (e.g., learnability
was found to be referred to as Fast Learning, Memorability, Recall, Ability to Recognize, Similar-

ity, Fits Well with its Associated Function, Systematic Understanding, Appropriate Mappings, User

Uptake, Action Matches Function, and so on, so all of these “factors” were aggregated under the
umbrella term learnability). This process underwent many iterations and resulted in the identifica-
tion of thirteen factors crucial to the design of gesture vocabularies (Figure 1). For readability and
improved organization, the factors are grouped into four categories, based on the interconnected
relationships between factors, e.g., those related to the interactive system itself, such as feedback
and recognition were grouped into System Factors. Herein, each factor is defined and described
using relevant examples and findings from the literature.

3.2 Situational Factors

Governing the development of any gesture vocabulary are the overarching goals that a designer
is trying to achieve and constraints they must contend with. Within the context of gesture design,
three themes important to situational constraints and opportunities emerged, including the context
where the gestures will be performed, the modality used to perform the gestures, and the social
factors that may influence a user’s performance and willingness to perform the gestures. Most
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Fig. 1. The 13 factors that were found to be essential for gesture design are grouped according to those that

were situational, cognitive, physical, and system-based.

often, these factors are found within research that employed Expert-led methodologies, as it is
experts and designers who decide the domain and scope of the activities associated to the gestures.

3.2.1 Context (i.e., Users, Environments, and Tasks). As defined by Dey, context describes any
information that characterizes the situation where a gesture will be performed (i.e., people, places,
and devices) [79]. The literature review demonstrated that the term context is used infrequently,
whereas terms such as users, environment, or task1 were more common. If gestures are performed
in a vehicle while driving, for example, a designer should identify the limitations of sitting in the
driver’s seat and the risks associated with divided attention, as well as seek opportunities that mini-
mize themovements of hands away from thewheel or the eyes away from the road [15, 86, 250, 252].
If children [61, 69, 189, 328], seniors [61, 303, 304], or those with motor [46] or visual impair-
ments [142, 144] will be performing the gestures, it is important to identify the unique challenges
that such a population may incur. For example, if a designer is creating a gesture vocabulary for
elderly users, they should consider how the physical limitations and memory issues that often
occur with age may influence the recall and performance of the gestures [303, 304].
Before one can evaluate the degree to which their gesture vocabulary meets or exceeds each of

the challenges or opportunities that the context imposes, designers must determine the require-
ments of their gesture vocabulary, which is often done before the gesture vocabulary is created.
However, as the survey demonstrated, none of the gesture vocabularies created to date weighed
people, places, and devices equally. Thus, a requirements evaluation can serve as a sanity check
for designers, ensuring that they are aware of all the challenges that their gesture vocabulary may
encounter.
To determine the requirements of their gesture vocabulary, one could use techniques such as

working through scenarios [308], storyboarding [313], use case development [131], task analy-
sis [81], or wireframing [126]. Robertson and Robertson also proposed the Volere Requirements

Specification Method (VRSM), which is used within engineering, organizational management,
and product design to identify the importance of preconditions of a product [272]. It contains 27
types of requirements that include, among others, legal, environmental, cost, scope, and perfor-
mance. To identify a requirement, one would complete a template scorecard (i.e., Requirement
Shell) to articulate the rational and importance of the requirement, as well as identify the con-
sequences that could occur if the requirement is not considered. This process lends itself to the
holistic and extensive understanding of gesture requirements.

1Reviewed literature included [3, 6, 10, 15, 23, 28, 31, 33, 36–38, 45, 47, 48, 52, 54, 55, 60–62, 64, 65, 68, 69, 73, 86, 90, 91, 93,

96–98, 100, 102–104, 109, 110, 114–119, 122, 124, 132, 134, 138, 142, 142, 144, 151, 157, 160, 161, 167, 169, 170, 175–177, 179,

186, 187, 189, 191–193, 201, 206, 208, 213, 215, 218, 219, 227, 234–238, 240, 242, 244, 246, 250, 252, 253, 255, 258, 261, 264,

267, 271, 280, 281, 284, 288, 290, 291, 294, 295, 301, 302, 304, 311, 314–316, 321, 323, 324, 329, 331, 333, 338, 342, 344, 345, 347,

349–351, 354–356, 362, 364, 366–368, 371, 372, 375, 382, 384, 386].
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3.2.2 Modality. According to Nigay, interaction modality with HCI has been discussed at mul-
tiple levels of abstraction. For example, a modality could be specified in general terms as “using
gestures” when comparing with modalities such as speech and keyboard, or more specifically as
“using finger gestures on a multi-touch screen” when comparing with arm or body gestures [72].
Today, a common level of abstraction has been the physical devices (e.g., touchscreen devices) and
the interaction languages (e.g., a set of 2D gestures) that a user would employ to achieve their goals
[232]. Modalities have also been referred to as enabling technologies [146] or tools [113] within the
literature.
Within the context of gesture design and for the purpose of distinguishing the many different

types of gestural interaction, we employ the lowest level of abstraction for modality, which refers
to the sensory input channel used to perform a gesture and the output channel that a system uses
to provide feedback to the user [72]. Designing for specific modalities has been, unsurprisingly, a
very popular topic to explore.2

In terms of input, modalities come in a variety of forms: fingers [265, 302, 303, 315, 374],
hands [187, 241, 244, 267], feet [134, 140, 156], nose [247, 385], the entire body [69], implements
such as styli [63, 316], and tangible objects such as steering wheels [15], controllers [64], or re-
mote controls [372]. Each input modality has a series of contexts that it works best for. Touch, for
example, is best for the direct physical manipulation of objects and is ubiquitous in mobile set-
tings, mice are preferred for their precision and accuracy, styli best mimic the nuances of inking
and sketching, and the keyboard is one of the most efficient input devices. The reader is referred
to Karam’s review of gestures in HCI for more specific details [146]. Such diverse input options,
however, introduce constraints for designers, not only in terms of which modality to support, but
also if and how execution will differ between modalities (e.g., finger and pen [316], or finger and
arm [89]). Although finger and arm-based gestures are the most popular, gesture designers also
need to be aware that alternative, less common input channels such as the feet, legs, elbows, and
so on may be better suited for input when, for example, the hands are occupied or attention is
divided (e.g., [112]). Note that work by Köpsel et al. indicated that the input modality chosen may
play less of a role in gesture performance than its context [162].
In terms of output, the technology that is available in an environment can influence howgestures

are executed and users’ responses to them. Many investigations have been undertaken to under-
stand which gestures are best matched to a given technology (e.g., tablets [259], televisions [323],
mobile phones [30, 48, 363, 390], multi-touch displays [173], and so on). For example, if only a large
screen is available, users will have a tendency to make larger gestures, which will take longer to
perform [127]. If content is being transferred between displays of different sizes, users have been
found to first gesture to make the content smaller and then gesture to transfer the content [170].
Devices that have a smaller form factor such as tablets or mobile phones enable users to gesture
with and on them, both when stationary and on the go [48, 316]. Larger devices such as computer
monitors and wall-sized displays do not offer such opportunities. Differences have also been found
in the smoothness and number of gesture repetitions users will perform while using tangibles and
physical objects versus virtual proxies and digital content [217]. Even the techniques used to detect
gestural input, e.g., optical versus surface acoustic wave, have been shown to impact the nature of
gestural movements [97]. In other cases, environmental factors may limit the technology that can
be used. For example, in-air gestures are often preferred over touch-based gestures for hygiene
reasons in the kitchen [98] or during surgical procedures [274].

2See references including [6, 15, 17, 28, 31, 37, 40, 47, 48, 54, 55, 68, 69, 73, 85, 86, 90, 93–97, 100, 108, 119, 122, 125, 132, 134,

138, 142, 147, 157, 161, 166, 176, 186, 187, 191, 201, 204, 208, 213, 218, 227, 235, 236, 240, 241, 244, 250, 257, 265, 266, 280, 282–

284, 288, 300–304, 310, 311, 315, 323, 324, 331, 335, 338, 343–348, 350, 367, 371, 376, 377, 382, 385].
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The utility and usability of modality-specific gesture vocabularies are often evaluated via Expert-
led methodologies that involve end users or close approximations of them. Experts typically work
with a specific modality, or a number of different modalities to compare performance and often
have user study participants’ movements, behavior, and opinions of the modalities observed and
measured [42, 66, 92, 377]. If gestures performed using a specific modality are found to require
more time and effort to learn, a designer may need to modify or redesign the gestures. A designer
also may need to switch to an alternative modality, but this could also result in the redesign of
the entire gesture vocabulary. We recommend that designers select a modality taking a holistic
consideration of the identified requirements within their desired context.

3.2.3 Social Acceptability. Social acceptability, as articulated by Williamson, refers to the social
and cultural factors that affect the user experience when a gesture is performed [358]. Such factors
can include the location where the gesture will be performed, the presence and composition of the
audience in this location, the age of the user, the body parts and areas that the gesture requires, the
size and duration of the gesture, and so on.3 Within the literature, social acceptability has also been
referred to as social comfort, cultural acceptability, and cultural transparency. Although interaction
is largely considered to be an individual experience, acceptability includes both how the user feels
while performing the gestures (i.e., the user’s social acceptability) and how nearby spectators will
perceive the gestures (i.e., the spectator’s social acceptability [269]). Thus, the perceptions and
reactions of others to the performance of gestures are important aspects of gesture design that
cannot be overlooked.
Koelle et al. identified four design strategies employed in the HCI literature to improve the so-

cial acceptability of interaction techniques, which include using subtle and unobtrusive interaction
to avoid negative attention, avoiding suggestiveness and misinterpretation, designing interactive
devices that are accessory like and of familiar styles, as well as making interaction more candid,
transparent, and observable [159]. These design strategies, however, do not always conform with
each other. Pohl et al. also found that hiding and deception have been employed to enable subtle
and unobtrusive interaction in social settings [256]. For example, Anderson et al. proposed using
deceptive and illusory techniques informed by principles of magic to improve subtlety of interac-
tion with digital devices to avoid negative effects on in-person interaction.
Rico and Brewster argued that acceptability is not purely a binary measure, but rather occurs

along a continuum [269]. Some gestures may be more appropriate to perform in certain locations
(e.g., in an elevator versus on a street corner) or with certain groups of spectators (e.g., with family
versus strangers). The social acceptability of a gesture can be further influenced by one’s need to
repeatedly performmovements due to poor recognition, if the gesture needs to be large and cannot
be performed subtly, or if the gesture employs mimetic, instead of alphabetic, movements [87].
Cultural norms also play a role, as hand and bodily gestures from one culture may be offensive
or inappropriate in another. When users deem gestures to be less acceptable or appropriate to
perform, they will be more hesitant and less likely to utilize them, or if they do perform them, will
feel uncomfortable [2, 82].

Best practices to achieve culturally- and socially-resilient gesture vocabularies recommend
asking end users to perform gestures in the wild or in a laboratory. Participants are then asked
via think-aloud protocols or questionnaires about how they feel while or after performing the
gestures [2, 5, 82, 99]. As such methodologies require users to perform gestures in public settings
or around people they do not know, “if users decide to interact by gestures (in the wild), they

3See references including [2, 5, 14, 82, 87, 99, 134, 159, 211, 240, 256, 263, 269, 288, 299, 335, 350, 358].
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implicitly categorize this interface as socially acceptable” [99]. This enables a designer to evaluate
social and cultural acceptability alongside other factors without incurring additional costs.
Gestures have also been recommended to be small, unobtrusive, unnoticeable [211], physically

comfortable, enjoyable, similar to everyday movements or gestures used with existing technolo-
gies, and not interferewith communication [358]. As suggested by Rehfeld et al., assigning gestures
to functional mappings such that gestures are universal across cultural contexts can make it easier
for users to learn and remember gestures [263].
Lastly, repeated exposure to, and performance of, some gestures can result in them changing

the cultural zeitgeist and becoming more socially acceptable over time [299]. Examples of now-
culturally appropriate gestures include the swipe gesture that users performed on the temples
of Google Glass, waving toward a Kinect sensor, and using foot gestures to interact with virtual
spaces [134]. It is important for designers to remember that as certain gestures become more or
less appropriate over time, it may be necessary to iterate on their gesture vocabularies later.

3.3 Cognitive Factors

In addition to situational factors, another theme that emerged was the importance of cognitive
factors to gesture design. A number of studies within the literature have focused on the importance
of the discoverability of the gesture vocabulary, how intuitive it is to use, how learnable the gesture
vocabulary is, and how transferable the gesture vocabulary is to other domains or contexts. Each
of these factors is affected by the user’s cognitive understanding of the system and the motions
they should be performing. Cognitive factors are often found to be important with User-led, and
occasionally Expert-led, methodologies [17, 121, 362, 364, 378].

3.3.1 Discoverability. The quality of gestures that enables a user to access intended referents of
those gestures despite a lack of knowledge about the gesture is often referred to as the discoverabil-
ity of a gesture [361]. This factor has also been termed guessability, approachability, self-revealing,
andmetaphorically or iconically logical towards functionality4 and is most often considered during
User-led methodologies. Regardless of the terminology used, in some contexts it may be crucial
that a gesture or gesture vocabulary is discoverable. For example, if one is required to perform a
gesture to initiate interaction with a kiosk that they are encountering for the first time, it is im-
portant to have a discoverable gesture vocabulary so they can quickly access system functionality,
rather than become frustrated and walk away.
As proposed byWobbrock et al. [361, 362], to determine how discoverable a gesture is, a gesture

vocabulary designer can compute the agreement rate or agreeability of a set of gestures using
various methods [9, 326, 331]. The agreement rate determines how similar the gestures elicited
from different participants are to each other, and thus how easy the gestures would be to guess
and perform in the wild [334, 340, 361]. As an alternative to this, Seto proposed the use of an
in-the-wild observational paradigm, which used video data to measure how frequently gestures
were performed by uninformed users in the wild and suggested that frequency could be used as a
measure of discoverability [289].
If a gesture set or individual gesture is deemed undiscoverable, many techniques can be used

to improve its discoverability. First, the output presented to users could be changed to provide
pre-execution information about the gestures a system supports (i.e., self-revealing gestures [38]
or visual and audio cues ([20, 381]). For example, using the hover state, a gesture cheat sheet, or an
animation or video of the gestures that could be performed could be displayed [18, 357]. If visual
feedforward and feedback cannot improve discoverability, a designer could also make use of an

4Reviewed references included [1, 9, 31, 58, 110, 175, 271, 289, 326, 331, 332, 334, 340, 345, 360–362, 378, 385, 386].
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action-outcome mapping that mimics common actions (e.g., like Hinckley et al. cutting and pinch-
ing gestures ([121]). Piggybacking on an already familiar or discoverable gesture is another way of
increasing the discoverability of functionality [378]. To reduce the need for users to discover and
learn a new set of gestures when interacting with a new application or interactive device, Vatavu
proposed nomadic gestures, which allow users to reuse their preferred and practiced gestures to
interact with newly encountered devices [322].
As more everyday users become collectively required to use and acquire gestures to complete

day-to-day tasks, the higher the likelihood that gestures that were not previously discoverable
become discoverable. Therefore, in some cases, it may be appropriate for developers to utilize
widely adopted gesture vocabularies for common interaction tasks.

3.3.2 Intuitiveness. In 1994, Raskin stated that intuitiveness refers to the degree to which a ges-
ture makes use of transferable and existing knowledge [260]. Years later, Jacob et al. furthered this
by recommended that newly proposed interaction techniques should draw strength from users’
pre-existing knowledge of the everyday, non-digital world [130]. For example, swiping to the left
to flip a virtual page could be considered an intuitive gesture because this action mimics the phys-
ical movements made when turning a page [343]. Intuitiveness has also been referred to as appro-
priateness, familiarity, and necessity.5 Intuitiveness is an important factor to consider because it
ensures that the “gesture afforded by the interface design is aligned to how users expect to provide

input” [173] and that there is an appropriate “cognitive association between [the] command or intent,

and its physical gestural expression” [300]. If the mapping between the action or movement does
not match the resulting functionality, or it is hard for the user to draw parallels or build upon the
existing knowledge they have, they will perform the incorrect gesture or not perform any gesture
at all. Note that a gesture may be intuitive without being discoverable (e.g., prior to 2007, novice
touchscreen participants would rarely guess the “pinch to zoom” gesture, though once shown by
an experimenter, would recall it flawlessly [357]).
Many methods can be used to measure how intuitive a gesture is. Nielsen et al., for example,

proposed two approaches [229], (i) a bottom-up approach similar to Wobbrock et al. UDG method-
ology [362] that presented actions or functionality to users and asked them to create a suitable
gesture and (ii) a top-down approach that showed users a gesture and asked them to select the
functionality that should be associated to the gesture from a candidate list. With these approaches,
it is common to ask novices [58, 101, 102, 115, 128, 300], experts [38], or members of a design or re-
search team [100] to comment on intuitiveness via questionnaires, interviews, video transcriptions
of the think-aloud words used by users while performing the gestures, and so on. As proposed by
Agarwal and Prabaker, one could also empirically measure intuitiveness by the computing the
differences in task duration between experts and novices [3].
If gestures are not found to be intuitive, it would be beneficial to change the mapping between

the gesture and the outcome, making use of a mapping that assigns the gesture to more cognitively
similar actions ormimic natural movements [121, 381]. It is also important to note that the repeated
exposure and performance of gestures in one contextmaymake them feel more intuitive in another
context. For example, Wobbrock et al. found that the traditional desktop user interface metaphor
was deeply rooted in the participants’ mental model and significantly influenced gestures they
created for multitouch surfaces.

3.3.3 Learnability. The notion of learnability refers to the ease with which new users can begin
effective interaction and achieve maximal performance with a gesture [83]. Learnability is one of

5See references including [1, 3, 4, 38, 54, 58, 73, 86, 98, 100–102, 115, 116, 128, 130, 134, 157, 169, 170, 173, 176, 177, 179, 191,

206, 224, 229, 235–237, 244, 250, 252, 255, 260, 282, 294, 295, 300, 301, 319, 342, 350, 371, 384].
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the most popular factors within the literature and is often referred to as fast learning, memorabil-

ity, recall, recognize, similarity, fits well with its associated function, systematic, chunking, mapping,
uptake, or matching.6

Learnability and intuitiveness are complementary, as the more intuitive a gesture is, the easier
it is to learn. However, intuitiveness refers to the mapping between a movement and outcome,
whereas learnability focuses on how this mapping, in addition to other factors, enables one to
recall a gesture. If a user is never able to learn a gesture vocabulary, it will not be used. Learnable
gesture vocabularies are beneficial because they negate the need for extensive training.
There are manymethods that a designer can use to determine how learnable a gesture or gesture

vocabulary is. Computing the number of gestures a user can remember is one method to determine
learnability [21, 34, 50]. Wobbrock et al. proposed using techniques such as counting the gestures
required for a unit action (i.e., gestures per character for text entry) or measuring the time it takes
to perform each gesture [364]. These measures assume that less learnable gestures will have higher
numbers of gestures per character and longer task times.
If training will be provided to a user before they will perform a gesture, then learnability may

not be as important. As there have been many investigations into the best way to teach gestures,
the reader is referred to Anderson and Bischof [13], Bau and Mackay [36], Bragdon et al. [50], or
Yee [381] for more details.

3.3.4 Transferability. Perkins and Salomon defined transferability as the degree to which the
learning of a gesture can enhance or undermine its performance in another context [248]. Within
the literature, this has also been termed generalizability, transfer to expertise, or adaptability, and
has been applied to transferring learned gestures to other hands [17], modalities [294, 295], appli-
cations or devices [368], user populations [182, 325], and to expert performance [13, 34, 50, 93, 139,
384].7 For example, [325] framed interactive gestures as a type of knowledge that can be character-
ized by the information of the gesture movement, having an understanding of the situation where
the gesture is performed, and the experience and skills of the user that leads to efficient execution
of the gesture. [325] further proposed that gesture knowledge should be easily transferred to situ-
ations requiring different gesture articulation, sensing environments, and interpretations of users’
preferences.
Transferability is similar to learnability [67] in that to use a gesture in a different context, a

user must first learn a gesture and then later recall it on demand. It is different, however, in that
certain gestures lend themselves better to transferring to a different context or situation. Consider
transferability to expert performance as an example. MarkingMenus [171] gestures enable users to
gradually improve the efficiency of gesture performance and robustness to error through repetitive
executions. If gestures can be modified to chain off each other or utilize chunking, transferability
can be improved [56]. This may, however, result in a gesture being composed of entirely newmove-
ments. Training and tutorials for gestures can also facilitate progress toward expert performance.
Transferability is often only considered when Expert-led methodologies are used. To measure

the transferability of a gesture or entire gesture vocabulary, one can use a retention and trans-
fer paradigm from the motor learning literature [13, 17]. As suggested by Silpasuwanchai and
Ren [294, 295], a designer could also ask users from the target population to comment on other
body parts that could be used to generate a given gesture. Given that this factor is dependent on
the user’s cognitive ability to remember and execute motor movements, it is imperative that users

6As suggested by the following: [1, 6, 9, 10, 13, 19, 21, 24, 33, 34, 36–38, 49, 50, 55, 83, 93, 94, 98, 101, 104, 116, 137, 169, 175,

178, 186, 191, 192, 197, 208, 224, 244, 250, 266, 277, 283, 284, 288, 294, 295, 300, 318, 324, 326, 330, 333, 342, 344, 347, 356, 364,

366, 368, 371, 372, 387].
7See references including [13, 17, 34, 50, 56, 67, 93, 139, 171, 182, 248, 294, 295, 325, 368, 369, 384].
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are involved in the design or evaluation of a gesture vocabulary that is intended to be transfer-
able [13, 17].

3.4 Physical Factors

The third theme that emerged within the literature were those factors that were influenced by
the physical movements that users make. These factors largely relate to the efficiency with which
gestures can be performed, the complexity of the movements, how ergonomically appropriate the
movements are, how natural themovements feel, and the degree to which the interface or feedback
provided to the user is occluded by the motions of the gestures.

3.4.1 Complexity. The Oxford Dictionary defines complexity as the state or quality of being
intricate or complicated [243]. When referring to gestures, this implies there is a certain degree
of difficulty to the movements that must be remembered or performed. Complexity may also be
referred to as mental load, performability, simplicity, or attention.8 The gestures that a user is re-
quired to perform should have the appropriate level of complexity given the task at hand. When
using a mobile phone, for example, the gesture performed to unlock the phone, which may be
done hundreds of times a day, should be as uncomplicated and simple as possible so that the user
can perform it in a variety of situations with relative ease. In other situations, however, it may be
appropriate to require that a more complex gesture be performed. If one is using an in-air gestural
interface to direct the movements of an endoscopic surgical robot, for example, the complexity
of the movements should match those the surgeon would normally perform during non-robotic
surgery to ensure that the robot performs the correct maneuvers and that gestures are not acci-
dentally identified.
Measuring the complexity of a gesture requires one to critically analyze the constituents

of the gesture movement, such as the number of steps, repetitive patterns, or distinct, discrete
movements each gesture requires [285]. Production time measurements and efficiency estimations
with the models used to evaluate efficiency can also indicate the complexity of a gesture. As
recommended by Yee, one should also manually check if a gesture requires unusual movements
that increase the effort one would need to exert [381]. As a majority of the methods to determine
complexity require empirical measurements, it is quite common for research concerned about
complexity to utilize Expert-led or Computationally-based methodologies to create gesture
vocabularies. For example, Leiva et al. proposed Omnis Prædictio, a generic technique that
can provide user-independent estimations of the many numerical features of gestures, such as
production time, speed, and curviness [185].
Complexity often influences other factors as well, e.g., a complex gesture may be hard to learn

because it is difficult to use and not discoverable [179]. As advantageous as it is to have a simple
gesture vocabulary, in some contexts, it is just as important to avoid overloading gestures (e.g.,
reusing the same gesture across applications butmapping it to different outcomes). Complexity can
also be related to efficiency, as increased complexity often correlates with decreased efficiency (see
Section 3.4.2 for a list of efficiency measures). These factors should thus be considered in tandem.
If a gesture is found to be highly complex, the designer can reduce the number of segments of the

gesture movement, the number of fingers or hands required to perform the gesture, or completely
redesign the gesture itself.

3.4.2 Efficiency. As per Office, efficiency refers to the accuracy and completeness with which
users perform an action or gesture [239]. Within the context of gesture design, efficiency is often

8See references including [1, 15, 24, 37, 49, 54, 59, 73, 79, 82, 91, 94, 103, 105, 165, 175, 179, 185, 187, 188, 240, 244, 246, 255,

281, 285, 291, 295, 318, 324, 333, 335, 362, 368, 372, 381, 386, 387].
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referred to as difficulty, human performance, interaction cost, speed, duration, effort, easy to perform,
or easy operation.9 Efficiency is important for gesture-based systems because it enables users to
increase their throughput as well as decrease the amount of physical and mental effort that they
need to exert. Selecting a single object using a lasso gesture, for example, takes longer, covers a
greater distance, and increases the likelihood of incorrect selectionswhen compared to a simple tap
gesture. While using a mobile keyboard, for example, typing by tapping letters with one’s thumb
is less efficient than swiping through the letters in a continuous manner, as the latter removes the
“up and down” motion between letter selections [168, 387]. Furthermore, systems which support
“lazy” execution, where the general shape of swipes is considered rather than specific locations,
enables experts to generate gestural input with increased efficiency [387, 387].

Efficiency is often considered when using Expert-led or Computationally-based methodologies
because the experts or algorithms designing the gestures use established techniques such as mea-
suring the time necessary to perform each gesture [278] or by applying estimation models such
as Vatavu et al. [330] or Isokoski’s [129] efficiency measures, Cao and Zhai’s CLC Model or Leiva
et al. KeyTime technique for unistoke gestures, Bjerre and Pedersen’s [43] or Rice and Lartigue’s
Touch-level Models [268], or Batran and Dunlop’s enhanced Keystroke-Level Model [35], as well
as Leiva et al. GATO technique [183].
If the gestures are found to be inefficient, one can make several modifications to the gesture.

The duration or size of the gesture could be decreased. A designer could also reduce the number
of repetitions that are required to perform the gesture (e.g., change the control to display ratio),
or completely redesign the gesture itself. In addition to modifying the gestures, beginning gesture
predicting during input can also reduce the time needed for a system to recognize gestures and
trigger corresponding actions [41, 286].

3.4.3 Ergonomics. The Office defines ergonomics as the human anatomical, anthropometric,
physiological, and bio-mechanical characteristics as they relate to physical activity [239]. Thus,
with respect to gestures, users should feel physically well when performing a gesture and they
should not encounter any pain, tiredness, or discomfort. When designing gestures, it is important
to consider the potential risks that may be involved. Some risksmay be immediately apparent, such
as asking users to perform a complex gesture that requires visual attention on the touchscreen of
a car, whereas other may be more long term, such as repetitive movements that lead to repetitive
stress injuries or carpel tunnel syndrome [229]. Although many factors encompass ergonomics, it
is important a user is aware of the positions that their body will be in when performing a gesture to
avoid fatigue, such as with the “gorilla arm” [275]. Within the literature, ergonomics is also often
referred to as physical ergonomics, point of articulation, safety, fatigue, comfort, stress, feasibility,
bio-mechanical risk, or gesture mechanics.10

To determine if gestures are ergonomic, designers should evaluate if their proposed gestures will
be safe and comfortable to perform. Designers should evaluate each gesture in their vocabulary
by examining:

— The use of outer positions of the joints of the finger, wrist, shoulder, and so on. [229]
— The use of repetition [229]
— How relaxed the muscles are [229]
— The use of static positions [229]

9Suggested references include [22, 35, 43, 56, 59, 103, 125, 129, 136, 181, 183, 268, 276, 278, 288, 311, 314, 330, 334, 364, 366,

387].
10See references including [1, 32, 34, 37, 44, 57, 62, 90, 98, 100, 107, 117, 118, 120, 125, 133, 210, 229, 236, 240, 244, 246, 258,

266, 267, 282, 300, 315, 319, 323, 335, 342, 350, 351, 366, 367, 372, 374, 375, 382].
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—How relaxed the “middle” neutral position is between outer positions [229]
— The internal and external force exerted on joints [229]
— If the gestures will stop body fluids from flowing [229]
— Increases in heart rate and fatigue [34]
— The amount of arm fatigue [117]
— The prevalence of multi-finger gestures (as opposed to single touch and two-finger ges-
tures) [266]

— The prevalence of bi-manual movements (as opposed to sequential uni-manual move-
ments) [266]

— The flexibility in the number of strokes required for a gesture [266]
— The use of unfamiliar shapes and complex geometries [266]

In addition to these guidelines, a gesturemay be safe to perform infrequently but repeated perfor-
mances of it may fatigue a user or gradually degrade other aspects of their posture (e.g., they begin
to slouch, shift their weight onto one leg, lean against another surface, etc.). Thus, it is important to
consider the complexity of a gesture, in addition to how it will be recognized, when thinking about
its ergonomics. Within the literature, gesture ergonomics are most often associated with Expert-
led or Computationally-based methodologies because end users infrequently consider the effects
of performing a gesture multiple times over a long duration, or within different, possibly more tir-
ing contexts. There has been some exploration of ergonomics within User-led methodologies, i.e.,
external physical constraints have been employed to emulate fatigue when eliciting gestures. For
example, Ruiz and Vogel fastened weights to users’ wrists to simulate low arm fatigue [282]. How-
ever, more exploration is required to identify whether and how accurately external constraints
can simulate the many kinds of ergonomic constraints and criteria that were identified from the
literature.
Ergonomics also depends on the modality that gestures are performed with. Less physical ef-

fort will be exerted if a gesture is performed with fingers than with arms, for example. When
directly manipulating elements on interactive surfaces, objects that are too large or too small can
be problematic. A common approach to addressing the inherent ergonomic issues of modalities is
to require that users perform small or indirect gestures with parts of their body that require the
least physical movement [140, 251, 355].

If a gesture is deemed to be unsafe or harmful, a designer may be able to change the size of the
gesture, the orientation of the body part making the gesture, where the gesture is performed, the
pressure required (if utilized), or the number of fingers required. In severe cases, the gesture itself
may need to be completely redesigned [229].

3.4.4 Occlusion. How much of a system’s output is covered or blocked when a gesture is per-
formed is commonly referred to as occlusion or the fat finger problem [336]. For example, on a
smartphone, if a user wants to place a pin at a location on a map by holding their finger down for
a fixed period of time, they would not know if the pin was placed correctly because their finger
would occlude the portion of the screen underneath their finger [379]. This problem becomes even
more concerning on ultra-small displays such as smartwatches [377]. When content is occluded,
the user either misses important information or feedback, has to relocate where they perform a
gesture, or change the size, scale, or orientation of the gesture they perform [336]. As such, the
occlusion factor is related to the feedback factor and occlusion is of most relevance to systems that
require direct input, such as touchscreens or stylus-enabled devices.11

11See references including [27, 31, 40, 50, 51, 74, 93, 201, 223, 279, 291, 336–339, 346, 354, 355, 374, 379, 380, 387].
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To determine if a gesture occludes other content, designers first need to consider how the move-
ments each gesture requires will obscure or block any visual information or interaction widgets
that may be presented to the user. As proposed by Vogel and Balakrishnan, the Hand Occlusion
Model can be used to determine which areas of the screen will be obscured by the hand, wrist, and
arm [336]. If this model is not a viable option for other body parts or posture, a designer could also
visually inspect the gestures or the intended interface to determine how much content is blocked
by the movements of the gestures, similar to Brandl et al. [51]. Because it is possible to deter-
mine if a gesture will occlude existing or future content without requiring that a user physically
perform the gesture, this factor is often considered during Expert-led or Computationally-based
methodologies.
If a designer has determined that one or more gestures will occlude content, a few options are

available. First, the designer can maintain the gesture itself but change where it is performed on
the screen. Making use of dedicated or offset gesture areas could also be a viable option [50, 381].
Alternatively, one could change the size of the gesture (i.e., instead of requiring motions that span
an entire surface, a micro version of the gesture could be required). Call-outs of the occluded
content or offsets of the input could also be possible modifications [336, 337].

3.5 System Factors

The final category of factors that emerged were those related to the features and techniques con-
tained within the systems and devices themselves. The two factors within this category arise from
the techniques and technologies that are used to recognize the user’s input and provide feedback
to the user during and after the gesture has been performed.

3.5.1 Feedback. Another factor that was prevalent in the literature was feedback. As defined
by Schneiderman, feedback refers to the communication that a system has with a user resulting
directly from the user’s actions (i.e., gesture [287]). Feedback is important because it allows a
user to determine whether the actual functionality of the system matches their mental model
of the functionality of the system [233]. Within gestural systems, feedback can inform the user
whether a gesture they made is currently being recognized or was recognized. In some systems,
this information can be conveyed using a sound [298], whereas in others visual changes will occur
within the interface [17] or haptic, olfactory, or tactile feedback may be rendered or generated.
Feedback has also been referred to as feedback ambiguity or system response,12 and is most often
considered when using Expert-led methodologies.
To determine what feedback is appropriate for a given action or functionality, one could elicit

feedback mechanisms from users or evaluate the effectiveness of various techniques that were
designed by experts during user studies with pre-defined sets of gestures. These studies could
measure noticeability, frustration, and so on. The design and evaluation of feedback are similar to
the complexity of gesture design itself because there are a multitude of intertwined factors that
influence feedback including size, shape, scale, persistence, duration, frequency, modality, and so
on [293]. In essence, feedback should clearly communicate success and sources of errors to users
without ambiguity so that they can take corrective actions when using a system [356].

Although feedback occurs after the execution of a gesture, feedforward (i.e., the information
providedwhile performing a gesture [36, 75, 76, 275]) is also important to consider as it can improve
learnability. For example, withOctoPocus, on-screen feedback, and feedforward are providedwhile
drawing a gesture. The feedback and feedforward enable users to not only understand the system’s

12See references including [17, 36, 75, 86, 91, 93, 98, 103, 115, 120, 163, 164, 189, 233, 234, 275, 287, 293, 298, 333, 337, 342,

351, 354–356, 379, 384].
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status but also be reminded about possible gesture paths, which can improve the execution and
learning of the gestures [36].

3.5.2 Recognition. The recognition of a gesture is the process of tracking a gesture from its ini-
tial representation through to its later conversion into a semantically meaningful command [262].
Within a subsection of the research literature, recognition techniques (i.e., detectability, ease of
implementation, orientation, recognition rate, selection accuracy, sensing, or risk of confusion with

natural movements) have been of the utmost importance.13 When a system is unable to recognize
a gesture, or recognizes a gesture incorrectly, users will try to perform the gesture again and again
in the same way, make larger and more exaggerated movements until it is recognized, or they will
stop performing the gesture altogether [40]. Recognition is most often considered when Expert-led
or Computationally-based methodologies are used.
Recognition goes hand-in-hand with discoverability, i.e., if a user walks up to a system for the

first time and performs the “correct” gesture, the gesture has no utility if the system does not
accurately recognize it. Most often, the performance of a recognition technique can be evaluated
using existing databases or recordings of gesture performances or in real time by capturing users
perform gestures. As there are a multitude of gesture recognition techniques in the literature, the
reader is referred to Khan and Ibraheem [150], Murthy and Jadon [222], Suarez and Murphy [307],
or Pisharady and Saerbeck [254] for reviews of possible gesture recognition techniques.

3.6 Discussion

The categories of factors were also found to have different design and evaluation requirements.
The situational factors, such as context and modality, often need to be approached on a case-by-
case basis, where gestures are designed to suit the specific needs of the contexts and leverage the
advantages of different modalities. As such, these factors were generally evaluated by examining
whether the designed gestures could help users complete tasks under certain contexts and with
certain modalities, and depending on the context could be assessed using expert or computational
methodologies.
On the other hand, the physical, cognitive, and system factors were found to be general criteria

that should apply to all gesture systems that are designed. Because of this, physical factors and sys-
tem factors were generally evaluated using datasets or real-time motions that were collected from
users but were most often only considered during Expert-led or Computationally-based method-
ologies. Cognitive factors were generally evaluated via questionnaires with participants during or
at the conclusion of an experiment to capture their impressions but not impede with their perfor-
mance of the gestures. These factors were often assessed only during User-led methodologies.
Thus, as the factor identification found, there are many factors that are implicated in the design

of gestures (Table 2). Some factors stand relatively isolated, such as social acceptability, whereas
others have a high interdependence, such as learnability and discoverability. Across the literature
that was reviewed, there was not one experiment or methodology that considered all of these
factors simultaneously, thereby underscoring the importance of reviewing and synthesizing this
body of literature and identifying these factors. In what follows, we assess the three categories of
gesture design methodologies in more detail, focusing on the implications that can occur when
one chooses to use a given methodology to design a gesture vocabulary.

13Suggested references include [12, 20, 24, 29, 34, 40, 64, 88, 90, 100, 108, 109, 119, 124, 132, 136, 141, 147, 150, 151, 158, 160,

163–167, 172, 186, 187, 195, 203, 207, 219, 222, 230, 234, 238, 241, 244, 254, 257, 262, 264–266, 270, 273, 278, 283, 292, 300, 307,

314, 315, 321, 327, 342, 343, 348, 351, 354, 372, 387, 389].
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Table 2. A Summary of the 13 Factors Identified within the Literature Review as being Important

to the Design of Gesture Vocabularies

Factor Definition Evaluation Refinement

Context Information that

characterizes the

situation where a

gesture will be

performed (i.e., people,

places, and devices) [79]

N/A (pre-condition) Understand requirement

by working through:

– Scenarios [308]

– Storyboards [313]

– Use cases [131]

– Task analysis [81]

– Wireframing

– Volere Requirements

Specification Method

[272]

Modality The sensory input

channel used to perform

a gesture and the output

channel the system uses

to provide feedback to

the user [72]

N/A (pre-condition) Input Modalities:

– fingers

[265, 302, 303, 315, 374]

– hands

[187, 241, 244, 267]

– feet [134]

– nose [385]

– entire body [69]

– styli [63, 316]

– controllers [64, 372]

Social

Acceptability

The social and cultural

factors that affect the

user experience when a

gesture is performed

[358]

– Visually inspect for weirdness

or attention seeking behavior

[269], interference with

communication [269], and

uncommon movements [269]

– Ask users during / after user

study, after in the wild

deployment, or in online survey

– Make gestures small,

unobtrusive,

unnoticeable, similar to

everyday movement

[211, 289]

– Make gestures

physically comfortable

and enjoyable [289]

Discoverability The quality of gestures

that enables a user to

access intended

referents of those

gestures despite a lack

of knowledge about the

gesture [361]

– Compute agreement score

[362]

– In the wild deployment and

observation [289]

– Utilize adopted

gestures

– Mimic common

actions [121]

– Reveal gestures when

appropriate [18]

Intuitiveness The degree to which a

gesture makes use of

transferable and

existing knowledge

[260]

– Lab study with matching

gestures to commands [228, 362]

and matching commands to

gestures [228]

– Lab study to measure

differences between expert and

novice duration [3]

– Leverage existing and

transferable knowledge

(Continued)
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Table 2. Continued

Factor Definition Evaluation Refinement

Learnability The ease with which

new users can begin

effective interaction and

achieve maximal

performance with a

gesture [83]

– Lab study to evaluate how

many gestures can be

remembered [21, 34, 50]

– Compute the similarity of

gestures [194]

– Compute number of segments

in a gesture [364]

– Compute duration of gesture

performance

– Reduce the number

of gestures

– Reduce the number

of gestures required a

unit task [364]

– Reduce the similarity

of gestures [194]

– Incorporate intuitive

mappings

– Incorporate gesture

training systems

[13, 36, 50, 381]

Transferability The degree to which the

learning of a gesture can

enhance or undermine

its performance in

another context [248]

– Lab experiment with retention

and transfer paradigm [13, 17]

– Lab study asking users to

transfer learned gesture to

another context [294, 295]

– Modify gestures that

can be chunked [56]

– Incorporate gesture

training systems

[13, 36, 50, 381]

Complexity The state or quality of a

gesture being intricate

or complicated [243]

– Inspect number of steps or

movements required by gestures

[285]

– Inspect movements that

require substantial effort [381]

– Indicated by the measurement

or predication of production time

– Reduce the number

of segments in gesture

movement

– Reduce the number

of figures and hands

required

– Match the complexity

of the gesture to that of

the task

Efficiency The accuracy and

completeness with

which users perform an

action or gesture [239]

– Compute production time

[278]

– Apply computational and

estimation models for pen

input[59, 129, 321], and touch

input [35, 268]

– Reduce the size of

gesture

– Reduce the duration

of gestures (i.e., shorter

dwell time)

– Reduce the number

of repetitions

Ergonomics The human anatomical,

anthropometric,

physiological and

biomechanical

characteristics as they

relate to physical

activity (i.e., performing

a gesture) [239]

Look for:

– Use of outer positions [229]

– Use of repetition [229]

– Use of static positions [229]

– How relaxed the muscles are

[229]

– How relaxed the “middle”

neutral position is between outer

positions [229]

– Change size of the

gesture

– Change where the

gesture is performed

– Change the geometry,

pressure of the gesture

to avoid issues

described on the left

(Continued)
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Table 2. Continued

Factor Definition Evaluation Refinement

– The internal and external force

exerted on joints [229]

– Whether gestures will stop

body fluids from flowing [229]

– Prevalence of multi-finger

gestures (v.s. single touch and

two-finger gestures) [266]

– Prevalence of bimanual

movements (v.s. sequential

unimanual movements) [266]

– Use of unfamiliar shapes and

complex geometries [266]

Also:

– Compute the flexibility in the

number of strokes required [266]

– Determine if they increase

heart rate and fatigue [34]

– Assess the amount of arm

fatigue [117]

Occlusion How much of a system’s

output is covered or

blocked when a gesture is

performed [336]

– Use Hand Occlusion Model

[336]

– Visually inspect for occlusion

[51]

– Change size of the

gesture

– Perform at dedicated

or offset area [50, 381]

– Use callout of the

occluded content

[336, 337]

Feedback communication that a

system has with a user

resulting directly from the

user’s actions (i.e., gesture)

[287]

– Lab study with think aloud

protocol or post-experiment

questionnaire

– In the wild deployment with

post-deployment feedback

– Select appropriate

modality

– Indicate success or

sources of errors clearly

[356]

Recognition Process of tracking a

gesture from its initial

representation through to

its later conversion into a

semantically meaningful

command [262]

– Compute accuracy/error – Reduce similarity of

gestures

– Utilize alternative

recognition algorithms

[150, 222, 254, 307]

4 HOLISTIC IMPORTANCE OF THE IDENTIFIED FACTORS TO GESTURE DESIGN

The identification and synthesis of the 13 aforementioned factors should provide the community
with a more consistent vocabulary and understanding of the characteristics that are important to
consider when designing a gesture vocabulary. The analysis also provides an opportunity to holis-
tically explore how these factors influence the gesture design process that one chooses to employ
and the implications that such factors can have if they are not considered when designing a ges-
ture vocabulary. Herein, we re-examine the three categories of gesture-design methodologies (i.e.,
Expert-Led, User-Led, and Computationally-Based) from a factor-oriented perspective to better
understand the degree to which each methodology focuses on each factor and highlight the poten-
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Table 3. A Comparison of the Degree to which Expert-Led, User-Led, and Computationally-Based Gesture

Design Methodologies Focus on the 13 Factors Identified by the Literature Review

Factor Expert-Led User-Led Computationally-Based

Context �� � �
Modality � � ��
Social Acceptability �� � �
Discoverability � �� �
Intuitiveness � �� �
Learnability � �� �
Transferability � � �
Complexity � �� �
Efficiency � �� ��
Ergonomics � � ��
Occlusion � � ��
Feedback � � ��
Recognition � � �
– Situational factors; – Cognitive factors; – Physical factors; – System factors; � – Yes; �� – Maybe; � – No

tial pitfalls of using such methods by applying the definitions and heuristics synthesized from the
literature (Table 3).

4.1 Situational Factors: Context

Among the three methodologies, User-led methodologies best address the context of gesture
vocabularies because end-users understand the context within which they will be performing
gestures so they are often the best entities to relate designed gestures to targeted tasks and
environments [179].
During Expert-led methodologies, if an expert is not well-versed or does not have extensive

experience with the context within which gestures will be performed, then it is important that
such methodologies contain a phase or component that involve the target end-user population
(or a reasonably close approximation of them) in the design process. Such a phase will enable
the expert to compensate for the knowledge they are missing and gather much needed insights
and feedback from users. For example, when designing gestures for users with visual or motor
impairments, it is essential to involve the target population during the design process so that the
requirements and preferences of such users can be captured [142, 253].

Computationally-basedmethodologies are the least effective at understanding and designing for
the nuances of context because it is difficult for algorithms to predict or quantitatively measure
characteristics such as who will be using a gesture vocabulary, where they will be doing so, and
what devices they will be using. In some sense, Computationally-based tools such as MAGIC [26]
and MAGIC 2.0 [160] could be viewed as tools that understood a primitive level of context because
they sought to learn and identify motions that should not be recognized (e.g., false positives or
unintentional input within everyday use), however, this level of context is far more general and
vague than that which could be obtained when User-led or Expert-led methodologies are used. If,
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however, a researcher explicitly provides such information to a computational model, such as how
Stern et al. specified task-based information as part of their multi-objective optimization algorithm
[300], then it is possible for such methodologies to consider context during gesture design. Such
methodologies, however, do require that the expert, programmer, or designer has knowledge about
the context to provide to such algorithms.

4.2 Situational Factors: Modality

Expert-led methodologies excel at considering the implications of different modalities because
experts are much more familiar with the characteristics and limitations of a chosen modality that
users, especially for emerging technologies that they may have created [18, 119, 376, 377]. For
example, by instrumenting a digital stylus with multi-touch sensing capabilities along the entire
barrel of the stylus, Hinckley et al. were able to recognize and identify a new set of stylus barrel
gripping gestures that could be used to enhance interaction with multi-touch surfaces [119].
Computationally-based methodologies could be used to evaluate the influence of a modality

on a gesture vocabulary, but only if the properties and functionality of a modality can be mod-
eled or recorded by experts. For example, with the aCAPella [106], Exemplar [111], and Mogeste
[245] systems, in addition to work by Kim and Nam and Kim et al., designers or developers could
record data from modalities such as touchscreens, mobile phones, cameras, RFID tags, or sensor-
embedded objects and use these data streams to generate gesture vocabularies [152, 153]. These
approaches, however, require that the designer or developer has background knowledge and in-
sights into which data they should record from such devices and has the ability to access and
record such data.
Unlike experts, who’s knowledge about a modality comes from their authoring of the modality

or their experience watching participants use the modality, users are far less likely to be experts
with a given modality. Interestingly, many research projects have solicited gestures from novice
users who were using a modality or device for the first time (e.g., interacting with smart glasses
[317] or unmanned aerial vehicles [249]). While novices’ limited experiences may help them cre-
ate gestures that are more discoverable, their naivete may encourage them to reuse gestures from
existing applications or contexts [85, 214, 281] or design gestures that would be awkward or so-
cially unacceptable to perform [204]. This thus makes User-led methodologies the least effective
at evaluating the role of modality.

4.3 Situational Factors: Social Acceptability

The best practice to ensure gestures are socially acceptable is to involve end users in the design
process and to encourage them to actively think about the social context that the gestures will be
performed in [2, 82, 99, 269]. User-led methodologies are thus the best methodology to use to do so.

By default, Expert-led methodologies, are not the preferred method to solicit the social accept-
ability of gestures because, unless the expert(s) are experts in the nuances of the social context
their gesture vocabulary will be used, they cannot understand the social or cultural implications of
each gestures’ performance. However, if such methodologies are augmented to allow participants
to provide feedback using think-aloud protocols or questionnaires, then such methodologies can
be used to understand how participants feel while or after performing gestures [2, 5, 82, 99]. For
example, Expert-led gesture vocabularies that were created without considering social acceptabil-
ity recommended that interaction with remote displays should occur at substantial distances from
a display (e..g, 250 cm) [205, 275]. However, research by Ahlström et al., found that in-air gestures
performed further than 30 cm away from a device or for longer than 6 seconds were perceived as
significantly less socially acceptable in public settings than those performed closer to a device or
for a shorter duration [5].
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Computationally-based methodologies are, unfortunately, not suitable to ensure gestures are
socially acceptable because the many variables that are relevant to social acceptability, such as
culture, audience, and environment cannot be easily quantified and often vary immensely from
situation to situation.

4.4 Cognitive Factors: Discoverability

Discoverable gestures are often informed by the past knowledge, experiences, and habits of users
[361]. In many cases, the history that a user brings to an elicitation study differs significantly
from the history and experiences of experts and is difficult to capture within a computational
model. As such, it is often difficult for experts or computational models to conceive gestures that
will be discoverable by general or target populations. For example, both Hinckley et al. and Xia
et al. introduced expressive bimanual pen and touch interaction techniques. However, participants
reported that they would not have “guessed” many of the gestures without guidance [121, 376].
User-led methodologies, however, seek to mimic users’ first attempts at a gesture in the wild

with the hope that the derived gestures will be easily discoverable. However, individual differences
between users make it challenging for elicited gestures to be universally discoverable. For example,
Wobbrock et al. found that among the 27 commands for which participants created gestures in
their study, only 2 gestures (i.e., move a little and move a lot) were universally agreed upon by
all participants [362]. As suggested by Vatavu and Wobbrock, in some cases, one may need to
compute how dissimilar the gestures for a given referent are [332]. While gestures that receive
moderate agreement ratings may still be discoverable after several attempts, the lack of consensus
between users suggests that gestures that are created via User-led methodologies can improve
discoverability but do not fully guarantee it.

4.5 Cognitive Factors: Intuitiveness

Similar to discoverability, intuitive gestures also rely on users’ past experience and first hand
knowledge. Gestures designed by end users should be intuitive, however, Wobbrock et al. found
low agreement amongst users for the majority of the referent commands in their study [362]. In
addition, while gestures such as double-tap, touch and hold, pinch and spread were all included in
the UDG set inWobbrock et al. work [362], these same gestures were not discovered or understood
by the older adult participants in Leitao and Silva’s work [179]. As such, gestures that are created
via User-led methodologies may have increased intuitiveness but may not necessarily be intuitive.

In a similar vein, the use of Expert-led methodologies does not guarantee that one will solicit
an intuitive gesture vocabulary, as experts’ prior experience and (likely) overexposure to gestural
interaction may bias what they consider to be intuitive [224]. Lastly, because it is difficult for com-
putational models to predict or create meaningful cognitive mappings, the use of Computationally-
based methodologies is also not suitable for the creation of intuitive gesture vocabularies.

4.6 Cognitive Factors: Learnability

Gestures that are developed via User-led methodologies build upon users’ collective past experi-
ences and knowledge, and are selected based on how high of an agreement score all of the ges-
tures that were elicited for a given referent are [9, 58, 326, 362]. In theory, this should result in
gestures that are easy to learn because they are the most common gestures that were elicited
from participants, and are thus the most familiar or easy to recall. However, because participants
rarely get to reflect or refine the entire set of gestures they have created during an experiment
[82, 84, 105, 295, 370, 373], they do not have the opportunity to holistically consider how similar
subsets of gestures may be, and thus how easy it would be to learn the entire gesture vocabulary.
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If participants are provided with refinement opportunities, then User-led methodologies could be
a viable method to evaluate the learnability of a gesture vocabulary.
In terms of Expert-led methodologies, if an expert can assess how similar a subset of gestures

is (e.g., [19, 197, 330]) or is aware of best practises for gesture design (e.g., use mnemonics [277]
semaphoric or pantomimic mappings [6], be analogous to the physical effects of the real world
[387], and so on) avoid, then it is possible that experts could perform preliminary assessments
about the learnability of a gesture vocabulary. However, because experts have extensive expe-
rience watching users perform gestures or interact with devices, and have immense experience
interacting with technology themselves, their very familiarity with gestural interaction may lead
them to underestimate the difficulty that a target population of users may have while learning a
gesture vocabulary. This was demonstrated by Nacenta et al., who found that gesture vocabularies
that were created via User-led methodologies were easier for participants to recall after 24 hours
and were preferred to gesture vocabularies that were created by experts [224].
As the literature does not yet have a clear understanding of the role that discoverability and

intuitiveness have on the learnability of gesture vocabularies, and there is much ongoing research
attempting to understand how to best teach gestures to users (e.g., [13, 36, 49]), it is difficult to
empirically model or abstract which movement and function mappings will be best for a vocab-
ulary of gestures. As such, Computationally-based methodologies do not currently support the
evaluation of gesture learnability.

4.7 Cognitive Factors: Transferability

Transferable gestures are those that can be executed using different modalities, in different con-
texts, or with different devices [13, 17, 369]. To increase the likelihood of transferability, some ex-
perts have suggested that chaining or chunking techniquesmay be useful as they allow constituent
gesture components to be reassembled as needed [171, 325], while others have recommended the
use of mindful abstraction and performance metaphors during training [369]. Because the design
of such gestures requires substantial expertise and holistic knowledge about user behaviours and
a system’s functionality, and also require a deep understanding of the characteristics of different
modalities, contexts, and devices [325], the use of Expert-led methodologies that involve end users
in the evaluation process [13, 17] are the only viable way to design gesture vocabularies that fulfill
such needs.
Although users may reuse gestures that they are familiar with during User-led methodologies,

this does not guarantee that the gestures they propose will be appropriate for other devices, con-
texts, or applications [214]. Because understanding how transferable gestures are required exper-
tise [325], it is unlikely that users will be able to design gestures that are universal or applicable
to a variety of contexts. As such, User-led methodologies are an ineffective methodology to use to
ensure that gestures are transferable.
As the research literature does not yet have a comprehensive understanding of the characteris-

tics of gestures that make them transferable, there are no models or frameworks that can be inte-
grated within a computational-based gesture design methodology to evaluate the transferability
of a gesture vocabulary. Thus, similar to User-led methodologies, computational-based methodolo-
gies are not suitable to assess gesture transferability.

4.8 Physical Factors: Complexity

As noted in Section 3.4.1, there are many measures that can be computed by experts or integrated
within computational models to measure the complexity of a gesture, such as counting the num-
ber of steps that need to be performed, the number of discrete movements that are made, or the
number of repetitive movements that are required [285]. Experts or computational models can
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also make use of more complex measures such as those found in Leiva et al. Omnis Prædictio
software, which can measure the turning angle, density, aspect, and perimeter to area ratio of a
gesture [185]. Because these measures exist, and they are trivial to compute, both Expert-led and
Computationally-based methodologies are suitable methodologies to ensure that the complexity
of individual gestures, and entire gesture vocabularies themselves, are as low as possible.
On the other hand, with User-led methodologies, it is unlikely that users will create gestures

that are complex to produce or intricate to perform, especially as users are likely to reuse gestures
from other devices or situations during elicitation studies [214]. However, because not all User-led
methodologies provide users with the opportunity to review the entire set of gestures they have
proposed or see the final gesture set after acceptability criteria have been applied [82, 105, 295],
theymay neglect to consider the overall complexity of an entire gesture vocabulary. For this reason,
depending on the specific instantiation of User-led methodology that is utilized, users may or may
not be able to evaluate the complexity of the gestures that they create.

4.9 Physical Factors: Efficiency

Expert-led methodologies are a great way to evaluate efficiency because experts can harness es-
tablished techniques or metrics within their experimental software to measure how efficient a
gesture is. The simplest such metric is the time necessary to perform each gesture [278], however,
depending on the type of gesture and input modality, one could also apply Vatavu et al. [330] or
Isokoski’s [129] efficiency measures, Cao and Zhai’s CLC Model [59], Leiva et al. KeyTime tech-
nique for unistoke gestures [181], Bjerre and Pedersen’s [43] or Rice and Lartigue’s Touch-level
Models, Rice and Lartigue [268] or Batran and Dunlop’s enhanced Keystroke-Level Models [35],
or Leiva et al. GATO technique [183].
Because the models and techniques that experts can use within Expert-led methodologies uti-

lize much of the same type of information as that required by Computationally-based method-
ologies, one could imagine that such efficiency measurement techniques could be integrated
into the software used for Computationally-based gesture design. While such methodologies cur-
rently do not include measures of efficiency, they would allow for such computations to occur
automatically alongside evaluations of recognizer accuracy, thus further increasing the utility of
Computationally-based methodologies.
Because the focus of many User-led methodologies is to find mappings between functions and

movements that are easy discover, it is not common for users to be concerned with efficiency [334].
As users are often asked to design one gesture per referent or perform a small number of repetitions
of a movement until they are “happy” with the gesture they have made [334, 340], users thus have
limited opportunities to become familiar with the gestures they have designed or perform them
for extended periods of time. This often results in User-led methodologies being unable to evaluate
efficiency unless users are explicitly asked about how easy the gestures they have designed would
be to perform [22, 276, 282, 362].

4.10 Physical Factors: Ergonomics

As identified within research by Barclay et al. [34], Hinckley et al. [118], Nielsen et al. [229], and
Rekik et al. [266], there are many facets of ergonomics that one should attend to while creating
gesture vocabularies. Although users may have personal experience with the effects of performing
repetitive or tiring movements [221, 225], unless they are explicitly told to attend to characteristics
such as the forces exerted on the joints while performing various movements, which types of
movements can stop body fluids from flowing, or the arm fatigue that may occur when performing
certain motions [282], it is unlikely that they will consider these characteristics. As such, User-led
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methodologies that do not inform the user about these characteristics are the least suitable to use
when creating gesture vocabularies.

On the other hand, many experts are aware of the role that such ergonomic characteristics
can have during gesture production. In some cases, this may be due to their years of experi-
ence watching participants complete tasks during user studies (i.e., seeing the gorilla arm phe-
nomenon occur first hand [44]), receiving feedback about how uncomfortable certain gestures
are to perform [7, 80, 151, 165, 269], or their awareness of the literature on gesture ergonomics
[57, 107, 210, 246, 258]. Regardless of how they obtained their expertise about ergonomics, the
use of Expert-Led methodologies allows these expert designers to implicitly evaluate their gesture
vocabulary for ergonomics issues throughout the implementation, testing, and debugging phases
of their experimental software or gesture recognition algorithm development. This unique oppor-
tunity to iteratively refine a vocabulary through first-hand experience cannot be found with other
types of methodologies.
Much work has also been conducted to model the bio-mechanical characteristics of the human

body, and has resulted in a number of bio-mechanical models or metrics that describe movement.
For example, work by Hincapié-Ramos et al. created the consumed endurance metric, which is
the ratio of total time to endurance and can be used to characterize the gorilla arm effect dur-
ing mid-air interaction [117]. In similar research by Jang et al., the cumulative arm fatigue of
mid-air interaction was computed using calculations about a user’s perceived exertion and arm
motion kinetics [133]. Other research such as that by Bachynskyi et al. identified 11 clusters of
bio-mechanical movements that had distinct performance, muscular, and spatio-temporal charac-
teristics and could be used to summarize muscle movement during interactive tasks [32]. Although
such models and metrics have yet to be integrated into the computational-based gesture design
tools that are available today, one could assume that such integration would enable the automatic
detection of some characteristics that may be too complex or dangerous for a human designer to
test and evaluate themselves, e.g., if a gesture stopped body fluid from flowing to a certain body
part or after how many repetitions a repetitive stress injury may occur.

4.11 Physical Factors: Occlusion

Because experts are aware of the graphics or information that will be provided on an interface
before, during, and after the production of a gesture, it is unsurprising that experts, and Expert-led
methodologies, are best suited to consider issues related to occlusion. As demonstrated by Brandl
et al. work with multi-touch tabletops and styli, experts often have ample prior experience and
knowledge about how the hands or arms may move around a surface and could block or occlude
content that is displayed [51]. In the case of Brandl et al. research, the researchers used their prior
knowledge to create handedness-aware menus and adapt the location of UI widgets so that the
information they presented to users would not be covered by users’ hands or styli.
Although not currently integrated within the computational tools that have been designed to

aid in the development of gesture vocabularies, computational models such as Vogel et al. model
of hand occlusion would be a very useful addition [339]. As this research showed, the small variety
of hand, wrist, and forearm postures that are used while inking can be abstracted into a circle and
rectangle unit that can be reoriented around the position of a stylus nib, provided that the location
of the stylus nib and the handedness of the user is known. This model can then be used to relocate
the position and orientation of graphics and UI widgets on an interface [336]. Similar models have
also been developed for single user [74, 338] andmulti-user [223] touch-based interaction onmulti-
touch tabletops [27, 279, 380].

User-led methodologies are the least effective at considering occlusion because users are often
unaware of how their, or others’, movements can occlude information that is being presented [31].
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In addition, these methodologies typically use a simple test environment to elicit gestures or ask
participants to make modifications to their movements to overcome technical limitations, thus
making it difficult for users to fully understand the visual context that will be present during the
real world performance of the gestures [62, 135, 157, 255, 319, 321, 333, 362]. These practises, and
thus the use of User-led methodologies, decrease users’ abilities to design gestures that will have
a negative influence on user experiences.

4.12 System Factors: Feedback

The design of effective feedback or feedforward solutions for gestural systems requires one to
have a holistic understanding of the ways in which the timing, duration, modality, semantic
meaning, and presentation schedules of feedback will influence gesture vocabularies [13, 36, 293].
Given that much expertise is required to (i) be aware of such factors and their interdependencies,
(ii) understand how to measure them, (iii) be able to design feedback techniques that fulfill them,
and (iv) be able to interpret users’ reactions to them, it is unsurprising that Expert-led method-
ologies are the only viable methodologies to use when designing effective feedback for gesture
vocabularies.

While Computationally-based methodologies may be able to help designers and developers as-
sess how the timing or duration of a gesture can influence its recognition rate, current tools and
software are unable to simulate users’ responses to various forms of feedback. If such tools were
extended to include information from crowdsourced studies that evaluated different feedback tech-
niques, similar to how CrowdLearner enabled the rapid creation of mobile gesture recognizers [11]
and the crowd was used to evaluate the social acceptability of spatial user interactions on head-
mounted displays [8], then it may be possible for Computationally-based methodologies to be
viable solutions to evaluate feedback in the future.

Although users may be quick to recognize when they perform an action and do not receive any
feedback [36, 75, 93, 164, 189], their lack of knowledge about how an interface senses their input,
how it determines if feedback should be provided, how it determines which feedback should be
provided, and how it generates or visualizes feedback results in users, and thus User-led method-
ologies, being unable to evaluate feedback during gesture design.

4.13 System Factors: Recognition

Computationally-based methodologies are the best suited of the three categories of methodologies
to ensure that gesture vocabularies can be correctly recognized by a system because almost all of
the tools that have been created to assist with gesture design include recognition accuracy as a
measure that can be quantified or visualized [88, 158, 172, 195, 207, 278, 292, 327]. Because designers
and developers can directly see potential recognition performance in the same tool that they are
using to generate gestures, it becomes trivial to use suchmethodologies to evaluate the impact that
different recognition algorithms, datasets, or sensing techniques have on a gesture vocabulary.
While creating gestural interfaces and running experiments to evaluate them, it is common for

experts to have some form of gesture recognition within their system, either via a series of algo-
rithms that monitor sensor data (e.g., [36, 48, 63, 224, 377]), or by using a Wizard-of-Oz approach
(e.g., [149, 154, 297]). Thus, many experts are aware of which data would be needed to recognize
a gesture, how the similarity between gestures can influence recognition, and the role that poor
recognition would have on user experiences. Therefore, it is not uncommon for Expert-ledmethod-
ologies to consider recognition during gesture vocabulary creation.
Because many of the users who participate in experiments that are conducted using User-led

methodologies are not developers or designers, but rather laypeople, their knowledge about how
a technology works, the data that can or is sensed while a gesture is performed, or the techniques
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that are available to recognize a gesture, is lacking [71, 105, 135, 258, 334]. Thus, they are often the
least qualified to make judgements about how recognizable a single gesture or an entire gesture
vocabulary will be, resulting in User-led methodologies being the least suitable methodology to
evaluate this factor.

4.14 Summary

The above evaluation used a factor-centric view of the three categories of gesture design method-
ologies that are commonly used within the literature. Based on this evaluation, it appears that
User-led or Expert-led methodologies are better suited to consider situational factors, however,
the end users involved in these design processes may not have the prior knowledge required to
leverage the strength of a given modality. User-led methodologies also seem suitable to evaluate
some cognitive factors, however, novice users may not be aware of the many issues that can ham-
per these factors, so it is difficult to definitively recommend a category of methodologies to use.
Expert-led and Computationally-based methodologies appear to excel at supporting physical and
system factors because the extensive knowledge and expertise that experts have accumulated, and
the existence of models derived from this knowledge, can be integrated into systems to evaluate
these types of factor categories.
Although each methodology has its own strengths and weaknesses, the analysis demonstrated

that no one methodology is currently capable of considering all factors, however, Expert-led
methodologies are capable of evaluating a subset of factors from each factor category. As it is
currently unclear the degree to which these methodologies could be modified to consider each fac-
tor or more factors within a factor category, we next identify research directions that are needed
to clarify and identify how these methodologies could be used more fruitfully in the future.

5 FUTURE RESEARCH AGENDAS

The review of the literature on gesture design, the identification of the factors that are important
to consider when designing gesture vocabularies, and the analysis of how different methodologies
do or do not support the evaluation of different factors, suggested that there are many research
avenues that should be considered to improve the design of gestures. In what follows, we present a
potential gesture design process that could be used to iteratively evaluate a subset of factors that a
designer deems appropriate for a given use case. We also discuss some additional factors that arose
during the literature review and highlight how they could impact the ever-changing ecosystem of
gesture design.

5.1 A Potential User-Centered, Factor-Centric Gesture Design Process

As indicated above, one limitation of existing gesture design approaches is that there is a mismatch
between the sets of factors a methodology is suitable for and the sets of factors gesture designers
may wish to optimize. Rather than selecting one methodology and being unable to evaluate a
given factor, one possible alternative is to take a user-centered, factor-centric approach, wherein
one uses a process that enables different factors to be iteratively refined, evaluated, or removed
during design time, whilst respecting the inter-dependencies that exist between various factors.
One possible instantiation of such a design process is depicted in Figure 2. Within this example

process, there are four phases that a designer would work through while designing their gesture
vocabulary: identifying the preconditions that will dictate the user experience with the gestures,
assigning prioritization weights to each of the evaluation factors based on the requirements from
the preconditions, creating an initial gesture design using an existing methodology (or using a
stock gesture vocabulary), continually refining and evaluating the vocabulary keeping in mind the
weights that were assigned to different factors, and finally, arriving at the final gesture vocabulary.
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Fig. 2. A proposed iterative, factor-centric gesture design methodology that ensures that the resultant ges-

ture vocabulary satisfies the requirements of a designer’s preconditions and other high-priority factors.

5.1.1 Understanding Requirements and Prioritizing Factors. With such an approach (Figure 2),
designers would first determine and understand the requirements of their gesture vocabulary. In
this example, user experience factors such as context, modality, recognition, and feedback, which
will influence the user experience and the designer’s goals, are examined to determine the degree
to which other factors should be weighed when iterating on a gesture vocabulary. For example,
if a system is to be used with a mall kiosk, the discoverability of the gestures might be weighed
higher than ergonomics because a given gesturemay be performed infrequently. The identification
of requirements will not only help designers form a complete understanding of the goals that are
guiding their user experience, but also serve as a sanity check to ensure that a designer is aware
of all the challenges their gesture vocabulary may encounter.
Asmany have demonstrated, there are tradeoffs betweenmany of the factors thatwere identified

in [224, 266, 330, 335]. As these tradeoffs make it impossible to design a gesture vocabulary that
would fulfill all the requirements of the factors, a designer should then prioritize the evaluation
factors (and reconsider the effectiveness of the feedback and the recognition accuracy), given the
requirements of the preconditions. One way to do this would be for a designer to assign each
factor an importance descriptor, such as high, medium, or low [353]. As an example, if the end
user population is blind, then it may be appropriate to rate factors such as Occlusion or Social
Acceptability low, whereas factors such as Discoverability and Recognition should be rated high.

It is also worth noting that executing the various evaluation and refinement methodologies also
requires time and resources (e.g., equipment and algorithms). Therefore, we recommend gesture
designers consider the accessibility and suitability of the different methodologies regarding each
of the factors when adopting this new gesture design approach.

5.1.2 Iteratively Evaluating and Refining Gesture Vocabulary. After prioritizing the factors, a de-
signer could then use their preferred method of choice to seed an initial gesture vocabulary (e.g.,
using a User-led, Expert-led, Computationally-based methodology, or using an existing, stock ges-
ture vocabulary). Once the initial gesture vocabulary has been developed, the designer could then
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work through each of the factors based on their priority, iteratively evaluating, refining, and mod-
ifying the proposed gesture vocabulary using the methods summarized in Section 3 and Table 2.
When a tradeoffmust occur, factors with high ormedium ratings should receive priority over lower
rated ones. Factors that are interrelated, such as Complexity and Efficiency, should be evaluated
holistically so that any changes that result do not cause a cascading effect in subsequent iterations
over the gesture vocabulary.
The point at which each factor is considered should also be determined based on how likely

each factor would be to cause detrimental ripple effects across the entire gesture vocabulary, simi-
lar to what is recommended for factors that are interrelated. Factors that, when considered, would
require modifications to a number of gestures or the entire vocabulary, should have higher prior-
ity and thus be evaluated before those that would require minimal modifications. For example, a
factor such as Social Acceptability could require that an entirely new gesture be created to con-
form to cultural or location norms. In comparison, there are user interface changes that could be
implemented to decrease the Occlusion of a gesture. Therefore, within the context of this example,
Occlusion should be considered later in the process than Social Acceptability.
A challenge of any iterative design process is to determine when to stop. Most often, an end-

point is reached when one runs out of time or resources, however, achieving the perfect gesture
vocabulary may never be possible as the design process itself is inherently one large set of trade-
offs. After iterative evaluation and refinement, the resulting gesture vocabulary should fulfill the
requirements of the preconditions and the factors that were deemed to be high importance because
important factors should have received enough revision, and been revised early enough, during
the process.

5.1.3 Summary. Although this process is but an example, we believe that the creation and use
of user-centered, factor-centric approaches have the potential to ensure that the gesture vocabu-
laries that are designed will be the most usable, safe, and beneficial for their target populations.
Different from existing gesture design methodologies, which focus on designing suitable gestures
by leveraging the expertise, experience, and capability of experts, users, or systems individually,
taking a user-centered, factor-centric approach to gesture design should enable the benefits of each
different methodology to be used, when appropriate.
Future work is obviously needed to validate this new user-centered, factor-centric gesture de-

sign approach by comparing it with existing methodologies, not only to ensure that the resulting
gesture approach results in more appropriate gesture sets, but also to evaluate the costs associated
with their use (e.g., number of iterative cycles needed, monetary cost of running multiple user
studies, etc.) and gain insights into reducing the cost of iterations. If for nothing else, we hope
that the proposal and outline of such an approach will improve awareness about the challenges
inherent in the design of gestures, the dependencies that exist between different factors, and the
potential pitfalls of using the most popular or easy-to-use method to create gesture vocabularies.

5.2 The Evolving Ecosystem of Gesture Design Factors

Although the literature review and analysis identified 13 factors that are critical for the design of
gestures, it may never be possible to identify and distill the complete set of factors that influence
how users remember, learn, and perform gestures, and how systems can support them in these
tasks.We first discuss the role of factor interdependencies on gesture design, detail some additional,
higher-level factors that emerged, and then provide commentary on the “naturalness” of gestures.
Understanding the complex connections among various factors is essential for gesture design,

as it enables designers to better understand the implications of prioritizing different factors and
resolving tradeoffs when designing gesture vocabularies. The identification of the 13 factors was
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a first step toward constructing a comprehensive picture of gestural interaction. However, much
future work is needed to better understand how to disentangle factors such as Complexity and
Efficiency, Intuitiveness and Learnability, Ergonomics and Recognition, Occlusion and Feedback,
and so on, as well as if and how they should be designed for independently. In addition to the
identified factors, it is also possible that new primitive factors may arise and should be added
to the ecosystem of factors as the field furthers its understanding of gesture design. While the
user-focused, factor-centric approach that was proposed is extensible and should allow for the
addition of new factors, care must be taken to identify and understand the relationships that exist
between the newly discovered and existing factors. To encourage the inclusion of new factors into
the ecosystem, we plan to construct an online, accessible, and community-maintained database
and visualizations of the factors and relevant research articles about these factors to ensure the
ecosystem can stay relevant and will evolve with time.
During the literature review, we encountered three other factors that are not included in the

final set of 13 factors. The first factor that emerged was the accessibility of gestures, e.g., for older
adults [179, 253], as well as with users who have motor [388], or visual impairments [142, 143, 145].
Within the factors that we identified, we did not include accessibility as a distinct factor, because
accessibility is a higher-level factor that can be decomposed into a number of the factors that
we identified, such as Context, Complexity, Learnability, and Feedback. For example, accessibility
is related to situational factors such as Context, because the requirements of users’ accessibility
need to be understood and considered by designers. It is also related to cognitive and physical
factors such as Complexity and Learnability, because a user’s cognitive and physical abilities may
pose different design constraints on these factors [179, 253]. Accessibility is also be associated
with system factors, such as Feedback, because tactile instead of visual feedback may need to
be evaluated for users with visual impairments [143]. As this factor, and likely others, can be
decomposed into a subset of the 13 factors that this present research identified, it seems important
to first establish the set of primitive factors before the inclusion of higher-level factors.
The second factor was multi-user gestural interaction (i.e., the use of gestural interaction in

multi-user collaborative or cooperative settings [174, 215, 216]). The factor identification and anal-
ysis provided within this article was limited to single user use cases because, as the analysis began
to demonstrate, there was yet to be a consensus about all of the factors implicated in the design
of single user gestures, let alone a methodology that could evaluate all of the factors at the same
time. As the multi-user use case is a more complex version of the single-user scenarios that are
commonly evaluated and used as use cases in the literature, it did not seem appropriate to dive
into this more complex topic before a solid foundation of single user gestural interaction was de-
veloped.While the findings about some factors such as Social Acceptability and Context may seem,
at first glance to be the most applicable to these scenarios, there is much need and opportunity to
explore how all the 13 factors influence these scenarios and also to identify any additional factors
that could be unique to multi-user settings (e.g., multi-user cooperation, user roles, territoriality,
and so on).
Lastly, one of the most popular factors that emerged was naturalness, which has also been re-

ferred to as fluidity, feelings, satisfaction, controllability, affect, and familiarity.14 Naturalness, how-
ever, is complex factor to consider because it is difficult to define and measure objectively. Baudel
and Beaudouin-Lafon argued that gestural interaction is natural because it builds upon the ma-
nipulation and gestural communication skills that humans acquire naturally [37]. Wigdor and

14See references including [1, 28, 29, 37, 54, 55, 65, 73, 86, 91, 98, 100–103, 108, 110, 115, 116, 119, 134, 157, 169, 170, 175–

177, 186, 187, 206, 208, 213, 226, 235, 235, 237, 238, 242, 244, 246, 250, 252, 255, 258, 281, 282, 284, 288, 291, 294, 295, 301, 302,

314, 319, 323, 324, 329, 333, 347, 349, 350, 362, 368, 382, 384].
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Wixon, however, proposed that naturalness is not in fact a design factor at all, but rather an expe-
rience goal, wherein a system should evoke a feeling of effortlessness and enjoyment that results
in users “act[ing] and feel[ing] like a natural” in its use [357]. These “natural” feelings are often
compounded by many relevant factors, such as Intuitiveness, Learnability, and Ergonomics. The
pinch to zoom gesture, for example, does not mimic or build upon an existing hand motions or
metaphors that users are accustomed to, but over repeated presentations and performances of the
gesture, has been described as a fluid, satisfying, familiar gesture by users who perform it every-
day [357].
Gestural interaction has often been used as one example of a “natural” user interface when com-

pared to the Windows, Icons, Menus, Pointer user interface metaphor [320]. Despite naturalness
having been repeatedly referred to in the literature, the definition of naturalness has been incon-
sistent [37, 357] and was often used alongside descriptions of other factors such as Learnability,
Intuitiveness, and Complexity [119, 121, 359, 376]. Given the lack of consensus regarding what
constitutes a “natural” movement or feeling and the fact that naturalness is often referred to as an
experience goal rather than as a design factor [101, 208, 300], naturalness was not considered to be
one of the factors crucial to the design of gestures within the context of this work. We respectfully
encourage the community to avoid the use of the terms “natural” or “naturalness” when describ-
ing interactive systems, and instead focus on using terms to describe the situational, cognitive,
physical, and system factors that govern gestural interaction, such as those that were identified,
analyzed, summarized in this work.

6 CONCLUSION

Over the decades, gestural interaction has become an increasingly dominant way to interact with
computing devices, such as touchscreens, mobile phones, or watches, or interact with immersive
experiences, such as augmented and virtual reality. Despite the widespread adoption of devices
with gesture sensing capabilities, the design of gesture vocabularies that suit the various needs
and constraints of an application, it’s context, and it’s users, is still a challenging task. This work
documents the efforts undertaken within the HCI community to design and understand gestural
interaction, through the invention of new input modalities and sensing techniques, as well as new
ways to measure and evaluate gesture vocabularies.

While a significant amount of work has explored different gesture design methodologies
and techniques that can address the problems inherent in gestural interaction, there is a lack
of work that has holistically understood, identified, or analyzed the various factors that are
essential to consider when designing gestural vocabularies. This work reviewed the literature
on gesture design and summarized the three main gesture design methodologies used today,
i.e., Expert-led, User-led, and Computationally-based, as well as identified 13 factors, separated
into four categories, that were crucial to the design of gestural experiences. These including
Situational (i.e., Context, Modality, and Social Acceptability), Cognitive (i.e, Discoverability,
Intuitiveness, Learnability, and Transferability), Physical (i.e, Efficiency, Complexity, Ergonomics,
and Occlusion), and System (i.e., Feedback and Recognition) factors. Best practices to evaluate
and refine gestures were also summarized for each of the identified factors, and a factor-centric
analysis of the existing gesture-design methodologies demonstrated that none of the existing
methodologies satisfy all the identified factors.
We thus proposed how iterative, user-focused, factor-centric methodology approaches could

serve as a practical guide for gesture designers to develop suitable gesture vocabularies in the
future. Such methodologies could identify the preconditions that will influence user experiences
with the gestures, assign weights to each factor to indicate their relative priority, call for the
creation of an initial gesture vocabulary, and encourage designers to continually refine and
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evaluate the gesture vocabulary while being mindful of the importance of different factors.
Lastly, we concluded with a short discussion on three additional factors that we encountered (i.e.,
multi-user, accessibility, and naturalness) and discuss how these factors are either compositions of
the 13 factors that we identified or are descriptors of experience goals, rather than design factors.
Through these exercises, we believe that this article has provided a foundational understanding

of the factors that influence gestural design, how these factors can be evaluated, and the implica-
tions that arise when different methodologies do or do not allow for an evaluation of such factors.
Although there is much research still to be done within respect to modeling and understanding
factors such as Transferability, Feedback, and Intuitiveness, in addition to examining more com-
plex scenarios involving multiple users, this research should help designers, developers, and re-
searchers develop a holistic understanding of the elements and characteristics that govern gestural
interaction and should pave the way for much future innovation with respect to the gesture design
methodologies, tools, and evaluations that will be possible.
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